[1] Sharma, A., & Sriganesan, P. (2018). Formulation development and optimization of fast dissolving film containing carvedilol nanocrystals for improved bioavailability. Journal of Drug Delivery and Therapeutics, 8(6),74-81.
[2] Taylor, K.M.G., & Aulton, M.E. (2021) Aulton's Pharmaceutics, 6th Edition, Elsevier Ltd.
[3] Kumar Janakiraman, A., Sumathi, B., Mohamed Saleem, T., Ramkanth, S., Odaya Kumar, P., & Venkatachalam, G. (2017). Design and evaluation of Carvedilol nanocrystals sustained release tablets. Journal of Applied Pharmaceutical Science, 7 (04), 061-068.
[4] Blagden, N., de Matas, M., Gavan, P.T., & York, P. (2007). Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced Drug Delivery Reviews, 59 (2007), 617-630.
[5] Yuvaraja, K., & Khanam, J. (2014). Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. Journal of Pharmaceutical and Biomedical Analysis, 96(2014), 10-20.
[6] Sharma, A., & Jain, C.P. (2010). Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res Pharm Sci, 5(1), 49-56.
[7] Planinšek, O., Kovačič, B., Vrečer, F. (2011). Carvedilol dissolution improvement bypreparation of solid dispersions with porous silica. International Journal of Pharmaceutics, 406(2011), 41–48.
[8] Chakraborty, S., Shukla, D., Jain, A., Mishra, B., & Singh, S. (2009). Assessment of solubilization characteristics of different surfactants for carvedilol phosphate as a function of Ph. Journal of Colloid and Interface Science, 335(2009), 242-249.
[9] Jouyban, a. (2019). Review of the Cosolvency Models for Predicting Drug Solubility in Solvent Mixtures: An Update. Journal of Pharmacy & Pharmaceutical Sciences. 22(2019), 466-485.
[10] Mokhtarpor, M., Shekaari, H., & Zafarani moatar, M.T. (2020). Measurements of the naproxen solubility in some choline-based deep eutectic solvents as novel green solvents in the pharmaceutical industry and the performance of the UNIIFAC model in this systems. Applied Chemistry Today, 15(54), 289-298. (in persian )
[11] Paiva, A., Craveiro, R., Aroso, I., Martins, M., L. Reis, R., Duarte, A.R. (2014). Natural Deep Eutectic Solvents - Solvents for the 21st Century. ACS Sustainable Chemistry & Engineering, 2(5), 1063-1071.
[12] Zarei, A., Haghbakhsh, R., & Raeissi, S. (2023). Overview and thermodynamic modelling of deep eutectic solvents as co-solvents to enhance drug solubilities in water. European Journal of Pharmaceutics and Biopharmaceutics, 193(2023), 1–15.
[13] Shekaari, H., Zafarani-Moattar, M.T., & Mokhtarpour, M. (2018). Experimental determination and correlation of acetaminophen solubility in aqueous solutions of choline chloride based deep eutectic solvents at various temperatures. Fluid Phase Equilibria, 462(2018), 100-110.
[14] Cao, J., Cao, J., Wang, H., Chen, L., Cao, F., & Su, E. (2020). Solubility improvement of phytochemicals using (natural) deep eutectic solvents and their bioactivity evaluation. Journal of Molecular Liquids, 318(2020), 113997.
[15] Tang, N., Zhong, J., & Yan, W. (2016). Solubilities of Three Flavonoids in Different Natural Deep Eutectic Solvents at T = (288.15 to 328.15) K. Journal of Chemical & Engineering Data, 61(12), 4203-4208.
[16] Mokhtarpour, M., Shekaari, H., Zafarani-Moattar, M.T., & Golgoun, S. (2020). Solubility and solvation behavior of some drugs in choline based deep eutectic solvents at different temperatures. Journal of Molecular Liquds, 297, 111799.
[17] Shekaari, H., Mokhtarpour, M., Faraji, S., & Zafarani-Moattar, M.T. (2021). Enhancement of curcumin solubility by some choline chloride-based deep eutectic solvents at different temperatures. Fluid Phase Equilibria, 532, 1127917.
[18] Lu, C., Cao, J., Wang, N., & Su, E. (2016). Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration. Medchemcomm, 7, 955-959.
[19] Zarghampour, A., Moradi, M., Martinez, F., Hemmati, S., Rahimpour, E., & Jouyban, A. (2021). Solubility study of mesalazine in the aqueous mixtures of a deep-eutectic solvent at different temperatures. Journal of Molecular Liquids, 336, 116300.
[20] Tajmir, F., & Roosta, A. (2020). Solubility of cefixime in aqueous mixtures of deep eutectic solvents from experimental study and modelling. Journal of Molecular Liquids, 303, 112636.
[21] Sepúlveda-Orellana, B., Gajardo-Parra, N.F., Do, H.T., Pérez Correa, J.R., Held, C., Sadowski, G., & Canales, I. R. (2021). Measurement and PC-SAFT modeling of the solubility of Gallic acid in aqueous mixtures of deep eutectic solvents. Journal of Chemical & Engineering Data, 66(2), 958-967.
[22] Jeliński, T., & Cysewski, P. (2018). Application of a computational model of natural deep eutectic solvents utilizing the COSMO-RS approach for screening of solvents with high solubility of rutin. Journal of Molecular Modeling, 24, 180.
[23] Jeliński, T., Przybyłek, M., & Cysewski, P. (2019). Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems: experimental and theoretical investigations. Drug Development and Industrial Pharmacy, 45, 1120-1129.
[24] Cysewski, P., & Jeliński, T. (2019). Optimization, thermodynamic characteristics and solubility predictions of natural deep eutectic solvents used for sulfonamide dissolution. International Journal of Pharmaceutics, 570, 118682.
[25] Shekaari, H., Zafarani-Moattar, M.T., Mokhtarpour, M., & Faraji, S. (2022). Effect of some choline based deep eutectic solvents on volumetric and ultrasonic properties of gabapentin drug in water at T = (288.15 to 318.15) K. Journal of Molecular Liquids, 346, 117073.
[26] Hayyan, M., Looi, C.Y., Hayyan, A., Wong, W.F., & Hashim, M.A. (2015). In vitro and in vivo toxicity profiling of ammonium-based deep eutectic solvents. PLoS One, 10(2), e0117934.
[27] Bakirtzi, C., Triantafyllidou, K., & Makris, D.P. (2016). Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3), 120-127.
[28] Hajebrahimi, & S., Roosta, A. (2020). Solubility of acetaminophen in aqueous solutions of three natural deep eutectic solvents (NADESs) and individual components of the NADESs. Journal of Molecular Liquids, 316, 113867.
[29] Moradi, M., & Jouyban, A. (2022). Study of naproxen dissolution in the mixtures of a cholinebased deep eutectic solvent + water at different temperatures. Journal of Molecular Liquids, 345, 117023.
[30] Mokhtarpour, M., Shekaari, H., Martinez, F., & Zafarani-Moattar, M.T. (2019). Effect of tetrabutylammonium bromide-based deep eutectic solvents on the aqueous solubility of indomethacin at various temperatures: measurement, modeling, and prediction with three-dimensional Hansen solubility parameters. AAPS PharmSciTech, 20, 204.
[31] Shayanfar, A., Fakhree, M.A.A., Acree, W.E., & Jouyban, A. (2009). Solubility of lamotrigine, diazepam, and clonazepam in ethanol + water mixtures at 298.15 K. Journal of Chemical & Engineering Data, 54(3), 1107-1109.
[32] Golgoun, S., Mokhtarpour, M., & Shekaari, H. (2021). Solubility enhancement of betamethasone, meloxicam and piroxicam by use of choline-based deep eutectic solvents. Journal of Pharmaceutical Sciences, 27(1), 86-101.
[33] Mokhtarpour, M., Samberan, P.A., Golmohammadi, B., Fattah, S.G., Khorsandi, M., Behboudi, M. R., Shekaari, H., & Zafarani-Moattar, M.T. (2021). Paracetamol in aqueous solutions of polymeric-based deep eutectic solvents; solubility, partitioning, volumetric and compressibility studies. J. Chem. Thermodynamics, 158, 106390.
[34] WILLIAMS, N.A., & AMIDON, G.L. (1982). Excess Free Energy Approach to the Estimation of Solubility in Mixed Solvent Systems 11: Ethanol-Water Mixtures. Journal of Pharmaceutical Sciences, 73(1),14-18.
[35] Machatha, S.G., Bustamante, P., & Yalkowsky, S.H. (2004). Deviation from linearity of drug solubility in ethanol/water mixtures. International Journal of Pharmaceutics, 283(1-2), 83-88.
[36] Jouyban, A., Khoubnasabjafari, M., & Acree, W.E. (2005). Mathematical representation of solute solubility in binary mixture of supercritical fluids by the Jouyban-Acree model. Pharmazie, 60(7) ,527-529.
[37] Jouyban, A., Chew N. Y. K., Chan H. K., Khoubnasabjafari M., Acree W.E. (2006), "Solubility prediction of salicylic acid in water-ethanol-propylene glycol mixtures using the Jouyban-Acree model ", Pharmazie 61,318-321.
[38] Wang H., & Zhang, X. (2019). Estimation of the solubility with cosolvent composition by combinated of the Williams–Amidon model with quasi virial coefficient. Journal of Chemical Engineering, 15(1), e2340.
[39] Khorsandi, M., Shekaari, H., & Mokhtarpour, M. (2020). Measurement and correlation of coumarin solubility in aqueous solution of acidic deep eutectic solvents based on choline chloride. Fluid Phase Equilibria, 524,112788.
[40] Kamal, A., & Haghtalab, A. (2020). Experimental and thermodynamic modeling of cefixime trihydrate solubility in an aqueous deep eutectic system. Journal of Molecular Liquids, 304, 112727.
[41] Sepúlveda-Orellana, B., Gajardo-Parra, N.F., Do, H.T., Pérez Correa, J.R., Held, C., Sadowski, G., & Canales, I. R. (2021). Measurement and PC-SAFT modeling of the solubility of Gallic acid in aqueous mixtures of deep eutectic solvents. Journal of Chemical & Engineering Data, 66(2), 958-967.
[42] Mokhtarpour, M., Shekaari, H., Martinez, F., & Zafarani-Moattar, M.T. (2019). Study of naproxen in some aqueous solutions of choline-based deep eutectic solvents: Solubility measurements, volumetric and compressibility properties. International Journal of Pharmaceutics, 564, 197-206.
[43] Mokhtarpour, M., Shekaari, H., Martínez, F., & Zafarani-Moattar, M.T. (2019). Performance of local composition models to correlate the aqueous solubility of naproxen in some choline based deep eutectic solvents at T = (298.15-313.15) K. Journal of Pharmaceutical Sciences, 25(3), 244-253.
[44] Jouyban-Gharamaleki, A., Valaee, L., Barzegar-Jalali, M., Clark, B.J., & Acree, W.E. (1999). Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures. International Journal of Pharmaceutics, 177(1), 93-101.
[45] Jouyban, A., & Acree, W.E. (2006). In silico prediction of drug solubility in water-ethanol mixtures using JouybanAcree model. Journal of Pharmacy & Pharmaceutical Sciences, 9(2), 2662-269.
[46] Mohammadian, E., Jouyban, A., Barzegar-Jalali, M., Acree, W.E., & Rahimpour, E. (2019). Solubilization of naproxen: Experimental data and computational tools. Journal of Molecular Liquids, 288, 110985.
[47] Hildebrand, J. H., & Scott, R.I. (1950). TheSolutilitgd Nonelectrolytes. American Chemical Society Zfmgraph 3rd Edition.
[48] Chertkoff, M. J., A. N. Martin (1960) "The Solubility of Benzoic Acid in Mixed Solvents", Journal of Chemical & Engineering Data 49, 444-447,
https://doi.org/10.1021/je060408x ????
[49] Adjei, A., Newburger, J., & Martin, A. (1980). Extended hildebrand approach: Solubility of caffeine in dioxane–water mixtures. Journal of Pharmaceutical Sciences, 69(6) , 659-661.
[50] Haghbakhsh, R., Raeissi, S., & C. Duarte, A.R. (2021). Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents. Journal of nature, 11, 6684.
[51] Joback, K.G. (1982). A unified approach to physical property estimation using multivariate statistical techniques. Massachusetts Institute of Technology.