[1] Taghizadeh, F., Mokhtarani, B., & Rahmanian, N. (2023). Air pollution in Iran: The current status and potential solutions. Environmental Monitoring and Assessment, 195(6), 737.
[2] Kumar, K., Bharti, A., Kumar, A., Ghosh, S. K., & Kumar, A. (2023). Choline based deep eutectic solvent for denitrogenation of liquid fuel: A molecular dynamics study. Journal of Molecular Liquids, 382, 121862..
[3] Saleh, T. A. (2020). Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends in Environmental Analytical Chemistry, 25, e00080.
[4] Chen, M., Zou, C., Tang, W., & Cao, Y. (2023). Stable hydrogen bonding interactions in supramolecular deep eutectic solvents based on carbon quantum dots: For extraction and oxidative desulfurization. Separation and Purification Technology, 323, 124491.
[5] Haruna, S. Y., Faruq, U. Z., Zubairu, A. Y., Liman, M. G., & Riskuwa, M. L. (2018). Comparative studies on reduction of sulphur content of heavy crude oil using KMnO4+ H2O2/CH3COOH and KMnO4+ H2O2/HCOOH via oxidative desulphurization (ODS). American Journal of Applied Chemistry, 6(1), 15-24.
[6] Zhu, J., Yu, J., Wu, P., Liu, J., Ji, H., Huang, Y., ... & Liu, Z. (2024). 3D printing of hierarchically porous lightweight activated carbon/alumina monolithic adsorbent for adsorptive desulfurization of hydrogenated diesel. Separation and Purification Technology, 330, 125334..
[7] Yang, L., Zhang, Z., Zhang, C. N., & Wang, X. L. (2024). A bifunctional POM-based Cu-viologen complex with mixed octamolybdate clusters for rapid oxidation desulfurization and effective photogeneration of hydrogen. Rare Metals, 43(1), 236-246.
[8] Zhang, W. S., Li, Y., Zhang, X., Shen, J., Wang, Y. G., Niu, Y. X., ... & Xu, Q. B. (2025). Study on extraction desulfurization of road-paving asphalt by deep eutectic solvents. Journal of Industrial and Engineering Chemistry, 144, 310-322.
[9] Akram, J., Hussain, M. U., Aslam, A., Akhtar, K., Anwar, M. A., Iqbal, M., ... & Akhtar, N. (2024). Genomic analysis and biodesulfurization potential of a new carbon–sulfur bond cleaving Tsukamurella sp. 3OW. International Microbiology, 27(5), 1429-1444.
[10] Li, X., Wu, X., Yu, H., Zhou, Z., Du, C., & Ren, Z. (2023). Highly selective extraction of aromatics from diesel fuel using dual N-containing heterocyclic deep eutectic solvents. Chemical Engineering Journal, 476, 146618.
[11] Liu, Y., Su, X., Cui, Y., & Zhou, X. (2023). One-step preparation of deep eutectic solvents/reduced graphene oxide composite materials for the removal of dibenzothiophene in fuel oil. Scientific Reports, 13(1), 832.
[12] Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical communications, (1), 70-71.
[13] Omar, K. A., & Sadeghi, R. (2023). Database of deep eutectic solvents and their physical properties: A review. Journal of Molecular Liquids, 384, 121899.
[14] Li, C., Li, D., Zou, S., Li, Z., Yin, J., Wang, A., ... & Zhao, Q. (2013). Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents. Green Chemistry, 15(10), 2793-2799.
[15] Mahdavi, A. R., Sobati, M. A., & Movahedirad, S. (2023). Intensification of extractive desulfurization in micro-channels using triethylamine/propionic acid as deep eutectic solvent. Chemical Engineering and Processing-Process Intensification, 191, 109459.
[16] Lima, F., Gouvenaux, J., Branco, L. C., Silvestre, A. J., & Marrucho, I. M. (2018). Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents. Fuel, 234, 414-421.
[17] Khan, N., & Srivastava, V. C. (2021). Quaternary ammonium salts-based deep eutectic solvents: utilization in extractive desulfurization. Energy & Fuels, 35(15), 12734-12745.
[18] Hadj-Kali, M. K., Mulyono, S., Hizaddin, H. F., Wazeer, I., El-Blidi, L., Ali, E., ... & AlNashef, I. M. (2016). Removal of thiophene from mixtures with n-heptane by selective extraction using deep eutectic solvents. Industrial & Engineering Chemistry Research, 55(30), 8415-8423.
[19] Xu, H., Zhang, D., Wu, F., Wei, X., & Zhang, J. (2018). Deep desulfurization of fuels with cobalt chloride-choline chloride/polyethylene glycol metal deep eutectic solvents. Fuel, 225, 104-110.
[20] Khaleghi, F., & Behroozi, M. (2025). Effective extractive desulfurization using novel, green and cost-effective triethanolamine-based deep eutectic solvents: Experimental design and optimization. Fuel, 395, 135219.
[21] Knaak, J. B., Leung, H. W., Stott, W. T., Busch, J., & Bilsky, J. (1997). Toxicology of mono-, di-, and triethanolamine. Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, 1-86.
[22] Zhu, D., Xu, L., Zhang, B., Zhu, L., He, J., Li, H., ... & Jiang, W. (2023). Designing Inorganic–Organic Dual-Acid Deep Eutectic Solvents for Synergistically Enhanced Extractive and Oxidative Desulfurization. Molecules, 28(23), 7743.
[23] Li, J. J., Xiao, H., Tang, X. D., & Zhou, M. (2016). Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization. Energy & Fuels, 30(7), 5411-5418.
[24] Gano, Z. S., Mjalli, F. S., Al-Wahaibi, T., Al-Wahaibi, Y., & AlNashef, I. M. (2015). Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design. Chemical Engineering and Processing: Process Intensification, 93, 10-20.
[25] Khan, N., & Srivastava, V. C. (2022). Extractive desulfurization using ethylene glycol and glycerol-based deep eutectic solvents: engineering aspects and intensification using ultrasound. Chemical Engineering and Processing-Process Intensification, 180, 108973.
[26] Shah, D., Gapeyenko, D., Urakpayev, A., & Torkmahalleh, M. (2019). Molecular dynamics simulations on extractive desulfurization of fuels by tetrabutylammonium chloride based Deep Eutectic Solvents. Journal of Molecular Liquids, 274, 254-260.
[27] Lemaoui, T., Benguerba, Y., Darwish, A. S., Hatab, F. A., Warrag, S. E., Kroon, M. C., & Alnashef, I. M. (2021). Simultaneous dearomatization, desulfurization, and denitrogenation of diesel fuels using acidic deep eutectic solvents as extractive agents: A parametric study. Separation and Purification Technology, 256, 117861.
[28] Abro, R., Kiran, N., Ahmed, S., Muhammad, A., Jatoi, A. S., Mazari, S. A., ... & Plechkova, N. V. (2022). Extractive desulfurization of fuel oils using deep eutectic solvents–A comprehensive review. Journal of Environmental Chemical Engineering, 10(3), 107369.
[29] Almashjary, K. H., Khalid, M., Dharaskar, S., Jagadish, P., Walvekar, R., & Gupta, T. C. S. M. (2018). Optimisation of extractive desulfurization using Choline Chloride-based deep eutectic solvents. Fuel, 234, 1388-1400.
[30] Lima, F., Gouvenaux, J., Branco, L. C., Silvestre, A. J., & Marrucho, I. M. (2018). Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents. Fuel, 234, 414-421.
[31] Rahma, W. S. A., Mjalli, F. S., Al-Wahaibi, T., & Al-Hashmi, A. A. (2017). Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions. Chemical Engineering Research and Design, 120, 271-283.
[32] MakoĊ, P., & Boczkaj, G. (2019). Deep eutectic solvents based highly efficient extractive desulfurization of fuels–Eco-friendly approach. Journal of Molecular Liquids, 296, 111916.
[33] El-Hoshoudy, A. N., Soliman, F. S., & Abd El-Aty, D. M. (2020). Extractive desulfurization using choline chloride-based DES/molybdate nanofluids; Experimental and theoretical investigation. Journal of Molecular Liquids, 318, 114307.