Preparation of Cu-Zn-Ce-Al Spinel Catalyst for Hydrogen Production in Micro-Channel Reactor and Considering the Geometrical Effects of Micro-Channels on Velocity Distribution

Document Type : Original Article


1 Green Chemical Technologies Group- Chemical Technologies Department- Iranian Research Organization for Science and Technology (IROST)- Tehran- Iran

2 Inorganic Chemistry and Catalysts Group- Chemical Technologies Department- Iranian Research Organization for Science and Technology (IROST)- Tehran- Iran


In this paper, preparation of new Cu-Zn-Al spinel catalysts with CeO2 using sol-gel and homogeneous precipitation methods are reported. For evaluation of the prepared catalysts for steam reforming of methanol, an A-type micro-channel reactor was designed and fabricated and the prepared catalysts were coated on the reactor channels by hybrid method between sol-gel and suspension methods. The catalysts were evaluated at 270 ºC to 310 ºC. For the catalysts evaluation a mixture of methanol and water with 1.5, 2.5 and 3.5 molar ratios were used as the feed of the reactor. Flow rate of the feed was 2 cc/h. Obtained results show that the prepared spinel catalysts were promising catalysts for hydrogen production by methanol steam reforming. Also, by computational fluid dynamic the geometrical effects of micro-channels on velocity distribution for two different A-type and Z-type micro-channels were considered.


Main Subjects

[1] S.Sá, H. Silva, L. Brandão, J.M. Sousa, A. Mendes, Appl. Catal. B: Environmental, 99 (2010) 43.
[2] Y. Chen, Y. Wang, H. Xu, G. Xiong, J. Membr. Sci., 322 (2008) 453.
[3] C. Zhang, Z. Yuan,  N. Liu, S. Wang,  Fuel Cells, 6 (2006) 466.
[4] A. Basile, A. Parmaliana, S. Tosti, A. Iulianelli, F. Gallucci, C. Espro, J. Spooren, Catal. Today, 137 (2008) 17.
[5] B. Lindström, L. J. Pettersson, Int. J. Hydrogen Energy, 26 (2001) 923.
[6] S. T. Yong, C. W. Ooi, S. P. Chai, X. S. Wu, Int. J. Hydrogen Energy, 38 (2013) 9541.
[7] A. Iulianelli, P. Ribeirinha, A. Mendes, A. Basile, Renew. Sustainable Energy Rev., 29 (2014) 355.
[8] S. K. Talkhoncheh, M. Haghighi, M. Abdollahifar, H. Ajamein, J. Appl. Chem., 30 (2014) 89.
[9] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, J. Catal., 251 (2007) 7.
[10] Y. Tanaka, T. Takeguchi, R. Kikuchi, K. Eguchi, Appl. Catal. A: General, 279 (2005) 59.
[11] Y.H. Huang, S.F. Wang, A.P. Tsai, S. Kameoka, Ceramics International, 40 (2014) 4541.
[12] G. Kolb, Chem. Eng. Process: Process Intensification, 65 (2013) 1.
[13] W. Zhou, W. Deng, L. Lu, J. Zhang, L. Qin, S. Ma, Y. Tang, Int. J. Hydrogen Energy, 39 (2014) 4884.
[14] V. Meille, Appl. Catal. A: General, 315 (2006) 1.
[15] J. M. Commenge, L. Falk, J.P. Corriou, M. Matlosz, AIChE J., 48 (2002) 345.
[16] D. Mei, L. Liang, M. Qian, X. Lou, Int. J. Hydrogen Energy, 38 (2013) 15488.
[17] D. Mei, L. Liang, M. Qian, Y. Feng, Int. J. Hydrogen Energy, 39 (2014) 17690.
[18] L. Khoshrooyan, A. Eliassi, M. Ranjbar, J. Particle Sc. Tech., 2 (2016) 41.
[19] J. Bravo, A. Karim, T. Conant, G.P. Lopez, A. Datye, Chem. Eng. J., 101 (2004) 113