Green and three-component synthesis of isoxazolones using natural sunlight and investigating their antibacterial activity

Document Type : Original Article

Authors

1 School of Chemistry, Damghan University, Damghan 36716‑45667, Iran

2 School of Chemistry, Damghan University, Damghan 36716‑45667, Iran. Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran.

3 Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran

Abstract

The green and efficient three-component reaction between aromatic and heteroaromatic aldehydes, β-ketoesters (ethyl acetoacetate and ethyl benzoylacetate) and hydroxylamine hydrochloride in water and under natural sunlight leads to the formation of various derivatives of 4-arylidene-isoxazole-5(4H)-ones. In this reaction, natural sunlight was used outdoors as a green, cheap, clean, available, safe and non-toxic source of energy. The reactions were carried out in Damghan under sunlight. In this synthetic method using sunlight, the heterocyclization reaction was performed with simple tools and without the use of special equipment. In this three-component reaction, 4-arylidene-isoxazole-5(4H)-ones were synthesized in a range of 17-40 minutes and with yields ranging from 89-97%. The advantages of this suitable and green method can be mentioned abundant sunlight or low-energy visible light as an energy source, no environmental pollution, very mild reaction conditions, simplicity of the reaction method, easy separation, no use of organic solvents and catalysts. Some compounds were tested for antibacterial activity using Staphylococcus aureus and Escherichia coli by disk diffusion method. Some synthesized compounds have good antibacterial activity. The antibacterial activity of synthesized heterocycles is higher against Escherichia coli.

Keywords

Main Subjects


This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Karetnikov, G. L., Skvortsov, D. A., Lopatukhina, E. V., Nikolaeva, S. N., & Bondarenko, O. B. (2021). Two-stage Regioselective Access to Non-symmetric 3,5-Diarylisoxazoles: Synthesis of Combretastatin A-4 analogues. Asian Journal of Organic Chemistry, 10(12), 3343-3348.
[2] Antonova, Y. A., Nelyubina, Y. V., Ioffe, S. L., Sukhorukov, A. Y., & Tabolin, A. A. (2022). Ring Closure of Nitroalkylmalonates for the Synthesis of Isoxazolines under the Acylation Conditions. Advancd Synthesis & Catalysis, 364(15), 2606-2612.
[3] Macchia, A., Cuomo, V. D., Di Mola, A., Pierri, G., Tedesco, C., Palombi, L., & Massa, A. (2020). On the Necessity of One-Pot Tautomer Trapping in Asymmetric Michael Reactions of Arylideneisoxazol-5-ones. European Journal of Organic Chemistry, 2020(15), 2264-2270.
[4] Torán, R., Vila, C., Sanz-Marco, A., Muñoz, M. C., Pedro, J. R., & Blay, G. (2020). Organocatalytic Enantioselective 1,6-aza-Michael Addition of Isoxazolin-5-ones to p-Quinone Methides. European Journal of Organic Chemistry, 2020(5), 627-630.
[5] Wang, Y., & Du, D. M. (2020). Highly Diastereo- and Enantioselective Synthesis of Isoxazolone-Spirooxindoles via Squaramide-Catalyzed Cascade Michael/Michael Addition Reactions. The Journal of Organic Chemistry, 85(23), 15325-15336.
[6] Panathur, N., Gokhale, N., Dalimba, U., Koushik, P. V., Yogeeswari, P., & Sriram, D. (2015). New indole–isoxazolone derivatives: Synthesis, characterisation and in vitro SIRT1 inhibition studies, Bioorganic & Medicinal Chemistry Letters, 25(14), 2768-2772.
[7] Anwar, T., Nadeem, H., Sarwar, S., Naureen, H., Ahmed, S., Khan, A. U., & Arif, M. (2020). Investigation of antioxidant and anti-nociceptive potential of isoxazolone, pyrazolone derivatives, and their molecular docking studies. Drug Development Research, 81(7), 893-903.
[8] Kuchana, M., Bethapudi, D. R., Ediga, R. K., &  Sisapuram, Y.  (2019). Synthesis, in-vitro antioxidant activity and in-silico prediction of drug-likeness properties of a novel compound: 4-(3,5-Di-tert-butyl4-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one. Journal of Applied Pharmaceutical Science, 9(09), 105-110.
[9] Ali, M., Saleem, U., Anwar, F., Imran, M., Nadeem, H., Ahmad, B., Ali, T., Atta‑ur‑rehman, & Ismail, T.  (2021). Screening of Synthetic Isoxazolone Derivative Role in Alzheimer's Disease: Computational and Pharmacological Approach. Neurochemical Research, 46(4), 905-920.
[10] Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B., & Ajaikumar, K. B. (2005). Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: a Michael addition approach. European Journal of Medicinal Chemistry, 40(11), 1143-1148.
[11] Wazalwar, S. S., Banpurkar, A. R., & Perdih, F.  (2017). Aqueous phase synthesis, crystal structure and biological study of isoxazole extensions of pyrazole-4-carbaldehyde derivatives. Journal of Molecular Structure, 1150, 258-267.
[12] Aslam, J., Aslam, R., Alrefaee, S. H., Mobin, M., Aslam, A., Parveen, M., & Hussain, C. M. (2020). Gravimetric, electrochemical, and morphological studies of an isoxazole derivative as corrosion inhibitor for mild steel in 1M HCl. Arabian Journal of Chemistry, 13(11), 7744-7758.
[13] Hemmer, J. R., Page, Z. A., Clark, K. D., Stricker, F., Dolinski, N. D., Hawker, C. J., & de Alaniz, J.R. (2018). Controlling Dark Equilibria and Enhancing Donor–Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design. Journal of the American Chemical Society, 140(33), 10425-10429.
[14] Zhang, X. H., Zhan, Y. H., Chen, D., Wang, F., & Wang, L. Y. (2012). Merocyanine dyes containing an isoxazolone nucleus: Synthesis, X-ray crystal structures, spectroscopic properties and DFT studies, Dyes and Pigments, 93(1-3), 1408-1415.
[15] Hua, J., Luo, J., Qin, J., Shen, Y., Zhang, Y., & Lu, Z. (2002). New nonlinear optical chromophores exhibiting good transparency and large nonlinearity: synthesis and characterization of chromophores with stilbene and ring-locked triene as a combined conjugation bridge. Journal of Materials Chemistry, 12(4), 863-867.
[16] Macchia, A., Eitzinger, A., Brière, J. F., Waser, M., & Massa, A. (2021). Asymmetric Synthesis of Isoxazol-5-ones and Isoxazolidin-5-ones. Synthesis, 53(1), 107-122.
[17] da Silva, A. F., Fernandes, A. A. G., Thurow, S., Stivanin, M. L., & Jurberg, I. D. (2018). Isoxazol-5-ones as Strategic Building Blocks in Organic Synthesis. Synthesis, 50(13), 2473-2489.
[18] Li, L., Luo, P., Deng, Y., & Shao, Z. (2019). Regioselectivity Switch in Palladium-Catalyzed Allenylic Cycloadditions of Allenic Esters: [4+1] or [4+3] Cycloaddition/Cross-Coupling. Angewandte Chemie International Editionm, 58(14), 4710-4713.
[19] Liu, H., Xing, R., Ren, K., Xue, F., & Feng, C. (2022). α-Iminyl Cation-Involved Indole Construction via Brønsted Acid-Promoted Reaction of Isoxazol-5-ones. The Journal of Organic Chemistry, 87(16), 11226-11230.
[20] Christodoulou, M. S., Giofre, S., Beccalli, E. M., Foschi, F., & Broggini, G. (2020). Divergent Conversion of 4-Naphthoquinone-substituted 4H-Isoxazolones to Different Benzo-fused Indole Derivatives. Organic Letters 22(7), 2735-2739. 
[21] Loro, C., Molteni, L., Papis, M., Presti, L. L., Foschi, F., Beccalli, E. M., & Broggini, G. (2022). Non-Decarboxylative Ruthenium-Catalyzed Rearrangement of 4-Alkylidene-isoxazol-5-ones to Pyrazole- and Isoxazole-4-carboxylic Acids. Organic Letters24(16), 3092-3096.
[22] Risitano, F., Grassi, G., Bruno, G., & Nicolb, F. (1997). Michael Addition versus 1,3-Cycloaddition Reactions of Pyridinium Ylides with (Arylmethylene)isoxazol-5-ones: Diastereoselective Formation of 4-[1-Aryl-2-(1-pyridinio)ethyl]isoxazolium-5-olates. Liehigs Annalen, 1997(2), 441-445.
[23] Okamoto, K., Oda, T., Kohigashi, S., & Ohe, K. (2011). Palladium-Catalyzed Decarboxylative Intramolecular Aziridination from 4H-Isoxazol-5-ones Leading to 1-Azabicyclo[3.1.0]hex-2-enes. Angewandte Chemie International Editionm, 50(48), 11470-11473.
[24] Molteni, L., Loro, C., Christodoulou, M. S., Papis, M., Foschi, F., Beccalli, E. M., & Broggini, G. (2022). Carbonylative Ring Expansion of Epoxides to β-Lactones Using Inorganic Salt as Catalytic Species Precursor. European Journal of Organic Chemistry, 2022(35), e202200496.
[25] Okamoto, K., Shimbayashi, T., Tamura, E., & Ohe, K. (2014). Palladium-Catalyzed Aza-Wittig-Type Condensation of Isoxazol-5(4H)-ones with Aldehydes. Chemistry A European Journal, 20(6), 1490-1494.
[26] Sabitha, G., Reddy, M. M., Archana, B., & Yadav, J. S. (1998). A Convenient Synthesis of Benzopyranacetylenes. Synthetic Communications, 28(4), 573-581.
[28] Macchia, A., Summa, F. F.,  Monaco, G.,  Eitzinger, A.,  Ofial, A. R., Di Mola, A.,  & Massa, A. (2022). Access to β-Alkylated γ-Functionalized Ketones via Conjugate Additions to Arylideneisoxazol-5-ones and Mo(CO)6-Mediated Reductive Cascade Reactions. ACS Omega, 7(10), 8808-8818.
[29] Liu, Q., & Zhang, Y. N. (2011). One-pot synthesis of 3-methyl-4-arylmethyleneisoxazol-5(4H)-ones catalyzed by sodium benzoate in aqueous media: a green chemistry strategy. Bulletin of the Korean Chemical Society. 32(12), 3559-3560.
[30] Laroum, R., & Debache, A. (2018). New eco-friendly procedure for the synthesis of 4-arylmethylene-isoxazol-5(4H)-ones catalyzed by pyridinium p-toluenesulfonate (PPTS) in aqueous medium. Synthetic Communications, 48(2018), 1876-1882.
[31] Patil, M. S., Mudaliar, C., & Chaturbhuj, G .U. (2017). Sulfated polyborate catalyzed expeditious and efficient three-component synthesis of 3-methyl-4-(hetero)arylmethyleneisoxazole-5(4H)-ones. Tetrahedron Letters, 58(33), 3256-3261.
[32] Kiyani, H., & Ghorbani, F. (2016). Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Research on Chemical Intermediates, 42(9), 6831-6844.
[33] Faramarzi, Z., & Kiyani, H. (2022). Steglich’s Base Catalyzed Three-Component Synthesis of Isoxazol-5-Ones. Polycyclic Aromatic Compdounds. (2022) in press, doi: 10.1080/10406638.2022.2061533.
[34] Faramarzi, Z., & Kiyani, H. (2021). Organocatalyzed Three-Component Synthesis of Isoxazol-5(4H)-ones under Aqueous Conditions. Heterocycles, 102(9), 1779-1790.
[35] Gharehassanlou, S., & Kiyani, H. (2022). A catalytic three-component synthesis of isoxazol-5(4H)-ones under green conditions. Indian Journal of Chemistry, 61(5), 515-520.
[36] Kiyani, H., & Ghorbani, F. (2015). Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Research on Chemical Intermediates, 41(5), 2653-2664.
[37] Kiyani, H., Darbandi, H., Mosallanezhad, A., & Ghorbani, F. (2015). 2-Hydroxy-5-sulfobenzoic acid: an efficient organocatalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols and 3,4-disubstituted isoxazol-5(4H)-ones. Research on Chemical Intermediates, 41(10), 7561-7579.
[38] Mashhadinezhad, M., Shirini, F., & Mamaghani, M. (2018). Nanoporous Na+-montmorillonite perchloric acid as an efficient heterogeneous catalyst for synthesis of merocyanine dyes based on isoxazolone and barbituric acid. Microporous and Mesoporous Materials, 262, 269-282.
[39] Safari, J., Ahmadzadeh, M., & Zarnegar, Z. (2016). Sonochemical synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay. Catalysis Communications, 86, 91-95.
[40] Maleki, B., Chahkandi, M., Tayebee, R., Kahrobaei, S., Alinezhad, H., & Hemmati, S. (2019). Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in water. Applied Organomettalic Chemistry, 33(10), e5118.
[41] Shanshak, M., Budagumpi, S., Małecki, J. G., & Keri1, R. S. (2020). Green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones using ZnO@Fe3O4 core–shell nanocatalyst in water. Applied Organomettalic Chemistry, 34(4), e5544.
[42] Bhatt, T. D., Gojiya, D. G., Kalavadiya, P. L., & Joshi, H. S. (2019). Rapid, Greener and Ultrasound Irradiated One-Pot Synthesis of 4-(Substituted-1H-Pyrazol-4-yl)Methylene)-3-Isopropylisoxazol-5(4H)-ones and Their In Vitro Anticancer Activity. ChemistrySelect, 4(37), 11125-11129.
[43] Kiyani, H., & Ghorbani, F. (2015). Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and α,β-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water. Research on Chemical Intermediates, 41(10), 7847-7882.
[44] Kiyani, H., Kanaani, A., Ajloo, D., Ghorbani, F., & Vakili, M. (2015). N-bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one. Research on Chemical Intermediates, 41(10), 7739-7773.
[45] Mosallanezhad, A., & Kiyani, H. (2019). Green Synthesis of 3-Substituted-4-arylmethylideneisoxazol-5(4H)-one Derivatives Catalyzed by Salicylic Acid. Current Organocatalysis, 6(1), 28-35.
[46] Mosallanezhad, A., & Kiyani, H. (2018). Sulfanilic Acid-catalyzed Synthesis of 4-arylidene-3-substituted isoxazole-5(4H)-ones. Current Organic Synthesis, 15(5), 715-722.
[47] Kiyani, H., & Ghorbani, F. (2017). Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in aqueous medium. Journal of Saudi Chemical Society, 21(S1), S112-S119.
[48] Kadam, H. K., Salkar, K., Naik, A. P., Naik, M. M., Salgaonkar, L. N., Charya, L., Pinto, K. C., Mandrekar, V. K., & Vaz, T. (2021). Silica Supported Synthesis and Quorum Quenching Ability of Isoxazolones Against Both Gram Positive and Gram Negative Bacterial Pathogens. ChemistrySelect, 6(42) 11718-11728.
[49] Farahi, S., Nowrouzi, N., & Irajzadeh, M. (2018). Three-Component Synthesis of Isoxazolone Derivatives in the Presence of 4-(N,N-Dimethylamino)pyridinium Acetate as a Protic Ionic Liquid. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 1881-1887.
[50] Saikh, F., Das, J., & Ghosh, S. (2013). Synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by visible light in aqueous ethanol. Terahedron Letters, 54(35), 4679-4682.
[51] Reihani, N., & Kiyani, H. (2021). Three-component Synthesis of 4-Arylidene-3-alkylisoxazol-5(4H)-ones in the Presence of Potassium 2,5-dioxoimidazolidin-1-ide. Current Organic Chemistry, 25(8), 950-962.
[52] Kour, P., Ahuja, M., Sharma, P., Kumar, A., & Kumar, A. (2020). An improved protocol for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones through L-valine-mediated domino three-component strategy. Journal of Chemical Sciences, 132, 0108.
[53] Kiyani, H., Jabbari, M., & Mosallanezhad, A. (2014). Efficient Three-Component Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-ones in Green Media. Jordan Journal of Chemistry, 9(4), 279-288.
[55] Ghogare, R. S., Patankar-Jain, K., & Momin, S. A. H. (2021). A Simple and Efficient Protocol for the Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones Catalyzed by Succinic Acid Using Water as Green Reaction Medium. Letters in Organic Chemistry, 18(2), 83-87.
[56] Barkule, A. B., Gadkari, Y. U., & Telvekar, V. N. (2022). One-Pot Multicomponent Synthesis of 3-Methyl-4-(Hetero)Arylmethylene Isoxazole-5(4H)-Ones Using Guanidine Hydrochloride as the Catalyst under Aqueous Conditions. Polycyclic Aromatic Compounds, 42(9), 5870-5881.
[57] Patil, B. M., Shinde, S. K., Jagdale, A. A., Jadhav, S. D., & Patil, S. S. (2021). Fruit Extract of Averrhoa bilimbi: A Green Neoteric Micellar Medium for Isoxazole and Biginelli-Like Synthesis. Research on Chemical Intermediates, 47(10), 4369-4398.
[58] Popatkar, B. B., Mane, A. A., & Meshram, G. A. (2021). Tomato fruit extract: an environmentally benign catalytic medium for the synthesis of isoxazoles derivatives. Indian Journal of Chemistry, 60B(10), 1362-1367.
[59] Kadu, V. R., & Gholap, S. S. (2019). An Expeditious Synthesis of 3-methyl-4-arylmethylene-isoxazole-5(4H)-ones Using Aqueous Extract of Acacia concinna Pods as a Natural Surfactant Catalyst. Indian Journal of Heterocyclic Chemistry, 29(4), 319-326.
[60] Gulati, S., Singh, R., & Sangwan, S. (2021). Fruit juice mediated multicomponent reaction for the synthesis of substituted isoxazoles and their in vitro bio-evaluation. Scientific Reports, 11, 23563.
[61] Vekariya, R. H., Patel, K. D., & Patel, H. D. (2016). Fruit juice of Citrus limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyrano[2,3-c]-pyrazole derivatives. Research on Chemical Intermediates, 42(10), 7559-7579.
[62] Daroughezadeh, Z., & Kiyani, H. (2022). Efficient and Aqueous Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-one Derivatives Using Piperazine under Green Conditions. Heterocycles,104(9), 1625-1640.
[63] Nitishkumar, K. S., Sunil, T. U., Srinivas, N. L., & Rajendra, P. P. (2021). Sulfated Tin Oxide: A Convenient Heterogeneous Catalyst for the Synthesis of 4-Arylmethylidene-3-Substituted-Isoxazol-5(4H)-Ones, Letters in Organic Chemistry, 18(12), 945-949.
[64] Oliveira, G. H. C., Ramos, L. M., de Paiva, R. K. C., Passos, S. T. A., Simoes, M. M., Machado, F., Correa, J. R., & Neto, B. A. D. (2021). Synthetic enzyme-catalyzed multicomponent reaction for Isoxazol-5(4H)-one Syntheses, their properties and biological application; why should one study mechanisms? Organic & Biomolecular Chemistry, 19(7), 1514-1531.
[65] Dekamin, M. G., & Peyman, S. Z. (2016). Phthalimide-N-oxyl salts: efficient organocatalysts for facile synthesis of (Z)-3-methyl-4-(arylmethylene)-isoxazole-5(4H)-one derivatives in water. Monatshefte für Chemie - Chemical Monthly, 147(2), 445-450.
[66] Aleaba, G., Khedmatgozar Asadi, S., Daneshvar, N., & Shirini, F. (2022),  Introduction of [2,2'-Bipyridine]-1,1'-Diium Perchlorate as a Novel and Highly Efficient Dicationic Brönsted Acidic Organic Salt for the Synthesis of 3-Methyl-4-Arylmethylene Isoxazole-5(4H)-One Derivatives in Water. Polycyclic Aromatic Compounds, 42(10), 7569-7581.
[67] Asadi, S. K., Aleaba, G., Daneshvar, N., & Shirini, F. (2021). Sustainable and green synthesis of 3-methyl-4-arylmethylene-isoxazole-5(4H)-one derivatives under mild conditions using a novel phosphoric acid-based molten salt as catalyst. Sustainable Chemistry and Pharmacy, 21, 100442.
[68] Kiyani, H., & Heidari, F. (2021). Efficient and three-component synthesis of 4-arylidene-3-propyl/chlromethylisoxazol-5(4H)-ones under aqueous conditions. Iranian Journal of Chemistry3(2), 195-202. (in Persian).
[69] Ghorbani, F., Kiyani, H., & Pourmousavi, S. A. (2020). Facile and expedient synthesis of α,β-unsaturated isoxazol-5(4H)-ones under mild conditions. Research on Chemical Intermediates, 46(1), 943-959.
[70] Basak, P., Dey, S., & Ghoush, P. (2020). Sulfonated Graphene-Oxide as Metal-Free Efficient Carbocatalyst for the Synthesis of 3-Methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones and Substituted Pyrazole. ChemistrySelect, 5(2), 626-636.
[71] Damghani, F. K., Kiyani, H., & Pourmousavi, S. A. (2020). Green Three-component Synthesis of Merocyanin Dyes Based on 4-Arylideneisoxazol-5(4H)-ones. Current Green Chemistry, 7(2), 217-225.
[72] Atharifar, H., Keivanloo, A., & Maleki, B. (2020). Greener Synthesis of 3,4-Disubstituted Isoxazole-5(4H)-ones in a Deep Eutectic Solvent. Organic Preparations and Procedures International, 52(6), 517-523.
[73] Yan, J. J., Sun, J. T., You, Y. Z., Wu, D. C., & Hong, C. Y. (2013). Growing Hyperbranched Polymers Using Natural Sunlight. Scientific Reports3, 2841.
[74] Oelgemoller, M. (2016). Solar Photochemical Synthesis: From the Beginnings of Organic Photochemistry to the Solar Manufacturing of Commodity Chemicals. Chemical Reviews, 116(17), 9664-9682.
[75] Mustafa, A. (1952). Dimerization Reactions in Sunlight. Chemical Reviews, 51(1), 1-23.
[76] Ciamician, G., Silber, P. (1900). Chemisohe Lichtwirkungen. Berichte der Deutschen Chemischen Gesellschaft, 33(3), 2911-2913.
[77] Ciamician, G. (1912). The Photochemistry of the Future. Science, 36(926), 385-394.
[78] Jadhav, N. L., Pandit, A. B., & Pinjari, D. V. (2017). Green approach for the synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl) prop-2-en-1-one) using concentrated solar radiation. Solar Energy, 147, 232-239.
[79] Ghorpade, P., Gadilohar, B., Pinjari, D., Shinde, Y., & Shankarling, G. (2015). Concentrated solar radiation enhanced one pot synthesis of DES and N-Phenyl phthalimide. Solar Energy, 122, 1354-1361.
[80] Hayakawa, M., Shirota, H., Hirayama, S., Yamada, R., Aoyama, T., & Ouchi, A. (2021). Sunlight-induced C–C bond formation reaction: Radical addition of alcohols/ethers/acetals to olefins. Journal of Photochemistry & Photobiology, A: Chemistry, 413, 113263.
[81] Protti, S., & Fagnoni, M. (2009). The sunny side of chemistry: green synthesis by solar light. Photochemistry & Photobiological Sciences, 8(11), 1499-1516.
[82] Xu, J., He, L., Liang, C., Yue, X., Ouyang, Y., & Zhang, P. (2021). Multicomponent Bifunctionalization of Methyl Ketones Enabled by Heterogeneous Catalysis and Solar Photocatalysis in Water. Acs Sustainable Chemistry & Engineering, 9(40), 13663-13671.
[83] Singha, R., & Shit, P. (2020). Sunlight assisted solvent free synthesis of tert-butylperesters. Synthetic Communications, 50(17), 2698-2703.
[84] Juntrapirom, S., Tantraviwat, D., Thongsook, O., Anuchai, S., Pornsuwan, S., Channei, D., & Inceesungvorn, B. (2021). Natural sunlight driven photocatalytic coupling of primary amines over TiO2/BiOBr heterojunction. Applied Surface Science, 545, 149015.
[85] Battula, V. R., Singh, H., Kumar, S., Bala, I., Pal, S. K., & Kailasam, K. (2018). Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer. Acs Catalysis, 8(8), 6751-6759.
[86] Shi, H., Li, J., Wang, T., Rudolpha, M., & Hashmi, A. S. K. (2022). Catalyst- and additive-free sunlight-induced autoxidation of aldehydes to carboxylic acids. Green Chemistry, 24(15), 5835-5841.
[87] Onuigbo, L., Raviola, C., Di Fonzo, A., Protti, S., & Fagnoni, M. (2018). Sunlight-Driven Synthesis of Triarylethylenes (TAEs) via Metal-Free Mizoroki–Heck-Type Coupling. European Journal of Organic Chemistry, 2018(38), 5297-5303.
[88] Gadkari, Y. U., Hatvate, N. T., & Telvekar, V. N. (2021). Solar energy as a renewable energy source for preparative-scale as well as solvent and catalyst-free Hantzsch reaction. Sustainable Chemistry and Pharmacy, 21, 100444.
[89] Gaspa, S., Valentoni, A., Mulas, G., Porcheddu, A., & De Luca, L. (2018). Metal-Free Preparation of α-H-Chlorinated Alkylaromatic Hydrocarbons by Sunlight. ChemistrySelect, 3(27), 7991-7995.
[90] Mishra, A. K., Parvari, G., Santra, S. K., Bazylevich, A., Dorfman, O., Rahamim, J., Eichen, Y., & Szpilman, A. M. (2021). Solar and Visible Light Assisted Peptide Coupling. Angewandte Chemie International Edition, 60(22), 12406-12412.
[91] Sadanand, V., Rajini, N., Rajulu, A. V., & Satyanarayana, B. (2018). Effect of sunlight on the preparation and properties of cellulose/silver nanoparticle composite films by in situ method using Ocimum sanctum leaf extract as a reducing agent. International Journal of Polymer Analysis and Characterization, 23(4), 313-320.
[92] Mathew, S., Prakash, A., & Radhakrishnan, E. K. (2018). Sunlight mediated rapid synthesis of small size range silver nanoparticles using Zingiber officinale rhizome extract and its antibacterial activity analysis. Inorganic and Nano-Metal Chemistry, 48(2), 139-145.
[93] Jung, C., Funken, K. H., & Ortner, J. (2005). PROPHIS: parabolic trough-facility for organic photochemical syntheses in sunlight. Photochemical & Photobiological Sciences, 4(5), 409-411.
[94] Ortner, J., Faust, D., Funken, K. H., Lindner, T., Schulat, J., Stojanof, C. G., & Froning, P. (1999). New developments using holographic concentration in solar photochemical reactors. Journal de Physique IV (Proceedings), 9(Pr3), 379-383.
[95] Sturzenegger, M., Winkel, L., & Guesdon, C. (2006). Solar extraction of copper: on application of concentrated sunlight in extractive metallurgy. Mineral Processing and Extractive Metallurgy, 115(1), 31-40.
[96] Gadkari, Y. U., Jadhav, N. L., Hatvate, N. T., & Telvekar, V. N. (2020).  Concentrated Solar Radiation Aided Green Approach for Preparative Scale and Solvent-Free Synthesis of 3-Methyl-4-(hetero)arylmethylene Isoxazole-5(4H)-ones. ChemistrySelect, 5(39), 12320-12323.
[97] Gadkari, Y. U.,  Hatvate, N. T.,  & Telvekar, V. N. (2021). Concentrated solar radiation‑assisted one‑pot/ multicomponent synthesis of pyranopyrazole derivatives under neat condition. Research on Chemical Intermediates, 47(10), 4245-4255.
[98] Sakamoto, M., Shiratsuki, K., Uemura, N., Ishikawa, H., Yoshida, Y., Kasashima, Y., & Mino, T. (2017). Asymmetric Synthesis by Using Natural Sunlight under Absolute Achiral Conditions. Chemistry A European Journal, 23(7), 1717-1721.
[99] Dazat, R. E., Vidal, E., Lorenzetti, A. S., Garcia, C. D., Domini, C., Silva, M. F., & Gomez, F. J. V., (2022). On-Site Preparation of Natural Deep Eutectic Solvents Using Solar Energy. ChemistrySelect, 7(16), e202104362.
[100] Oelgemoller, M., Healy, N., de Oliveira, L., Jung, C., & Mattay, J. (2006). Green photochemistry: solar-chemical synthesis of Juglone with medium concentrated sunlight. Green Chemistry, 8(9), 831-834.
[101] Dondi, D., Protti, S., Albini, A., Carpio, S. M., & Fagnoni, M. (2009). Synthesis of γ-lactols, γ-lactones and 1,4-monoprotected succinaldehydes under moderately concentrated sunlight. Green Chemistry, 11(10), 1653-1659.
[102] Darzi-Daroonkala, M., & Kiyani, H. (2019). Synthesis of 1,3-diazabicyclo[3.1.0]hex-3-en-2-yl-4H-chromen-4-ones as photochromic compounds. Applied Chemistry14(52), 307-320. (in persian)
[103] Mosavi niaraki, S., Azimi Roshan, A., Monfared, A., & Kiyani, H. (2021). Green and three-component synthesis of 2-cyclohexylamino-2-oxo-1-arylethyl/alkyl thiophene-3-carboxylates in aqueous medium. Applied Chemistry16(60), 49-62. (in persian)
[104] Mirani Nezhad, S., Pourmousavi, S. A., & Nazarzadeh Zare, E. (2022). Poly(styrene-co-maleic anhydride) modified with nickel sulfate and its application in the synthesis of 2-amino-4H-chromenes. Applied Chemistry17(62), 115-138. (in persian)
[105] Kafi-Ahmadi, L., khademinia, S., & Esmaeili, R. (2021). One pot three component synthesis of 2-amino-4H-chromene derivatives under microwave irradiation using Sr2As2O7 nanocatalyst. Applied Chemistry16(60), 153-166. (in persian)
[106] Alizade-Majd, M., Sarvary, A., & Nahali, M. (2020). Synthesis of 3-aminoimidazo[1,2-a]pyridines via three-component reaction in the 2,2,2-trifluoroethanol-water two-phase systems. Applied Chemistry15(55), 69-80. (in persian)
[107] González, C. G., Mustafa, N. R., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Application of natural deep eutectic solvents for the “green”extraction of vanillin from vanilla pods. Flavour and Fragrance Journal, 33(1), 91-96.
[108] Shapiro, N., & Vigalok, A. (2008). Highly Efficient Organic Reactions “on Water”, “in Water”, and Both. Angewandte Chemie International Editionm, 47(15), 2849-2852.