DNA groove binding of an asymmetric cationic porphyrin and its Cu(II) complex: Resolved by spectroscopic, viscometric and molecular docking studies

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 گروه شیمی معدنی، دانشکده شیمی، دانشگاه مازندران

2 مدیر گروه، گروه شیمی معدنی، دانشکده شیمی، دانشگاه مازندران، بابلسر

10.22075/chem.2019.17900.1643

چکیده

In the present study, the interaction between water-soluble cationic asymmetric porphyrin, 5-(1-Hexadecyl pyridinium-4-yl)-10, 15, 20-tris (1-Butyl pyridinium-4-yl) Porphyrin Chloride, and its copper (II) derivative with calf thymus DNA (CT-DNA) were studied by means of spectroscopic techniques, viscosity measurements and molecular docking. The monitoring of the changes in visible absorbance spectra showed a small red shift and a little hypochromicity in the Soret band. Also, insignificant changes were appeared in the viscosity of DNA with increasing of the porphyrins. These results suggested that these porphyrins bound to DNA through the groove binding mode. Then, multivariate curve resolution-alternating least squares (MCR-ALS) method was employed on UV–visible spectral data matrix to resolve the spectral and concentration profiles of the components involved in the interaction and the binding constant was estimated by the combination of bard equation and MCR-ALS approach. Furthermore, molecular docking studies confirmed experimental results obtained by spectral techniques and provide deeper insight into the porphyrin-DNA interaction.

کلیدواژه‌ها


عنوان مقاله [English]

DNA groove binding of an asymmetric cationic porphyrin and its Cu(II) complex: Resolved by spectroscopic, viscometric and molecular docking studies

نویسندگان [English]

  • Roghayeh Aleeshah 1
  • Abbas Eslami 2
1 Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar, Iran
2 Department Head, Department of Inorganic Chemistry, Faculty of Chemistry,University of Mazandaran, Babolsar, Iran
چکیده [English]

In the present study, the interaction between water-soluble cationic asymmetric porphyrin, 5-(1-Hexadecyl pyridinium-4-yl)-10, 15, 20-tris (1-Butyl pyridinium-4-yl) Porphyrin Chloride, and its copper (II) derivative with calf thymus DNA (CT-DNA) were studied by means of spectroscopic techniques, viscosity measurements and molecular docking. The monitoring of the changes in visible absorbance spectra showed a small red shift and a little hypochromicity in the Soret band. Also, insignificant changes were appeared in the viscosity of DNA with increasing of the porphyrins. These results suggested that these porphyrins bound to DNA through the groove binding mode. Then, multivariate curve resolution-alternating least squares (MCR-ALS) method was employed on UV–visible spectral data matrix to resolve the spectral and concentration profiles of the components involved in the interaction and the binding constant was estimated by the combination of bard equation and MCR-ALS approach. Furthermore, molecular docking studies confirmed experimental results obtained by spectral techniques and provide deeper insight into the porphyrin-DNA interaction.

کلیدواژه‌ها [English]

  • Calf thymus DNA
  • Asymmetric cationic porphyrin
  • Grove binding mode
  • MCR-ALS
  • Molecular docking
[1] G.I. Cárdenas-Jirón, L. Cortez, J. Mol. Model. 19 (2013) 2913.
[2] C.W. Lee, H.P. Lu, C.M. Lan, Y.L. Huang, Y.R. Liang, W.N. Yen, Y.C. Liu, Y.S. Lin, E.W.G. Diau, C.Y. Yeh, Chem.: A Eur. J. 15 (2009) 1403.
[3] K. Alenezi, A. Tovmasyan, I. Batinic-Haberle, L.T. Benov, Photodiagnosis Photodyn Ther. 17 (2017) 154.
[4] W.-B. Huang, W. Gu, H.-X. Huang, J.-B. Wang, W.-X. Shen, Y.-Y. Lv, J. Shen, Dyes Pigm. 143 (2017) 427.
[5] X. Liang, X. Li, L. Jing, X. Yue, Z. Dai, Biomaterials 35 (2014) 6379.
[6] J.H. Zagal, S. Griveau, K.I. Ozoemena, T. Nyokong, F. Bedioui, J. Nanosci. Nanotechnol. 9 (2009) 2201.
[7] V. Jeyalakshmi, S. Tamilmani, R. Mahalakshmy, P. Bhyrappa, K.R. Krishnamurthy, B. Viswanathan, J. Mol. Catal. A: Chem. 420 (2016) 200.
[8] K. Garg, R. Shanmugam, P.C. Ramamurthy, Carbon 122 (2017) 307.
[9] L. Lvova, C. Di Natale, R. Paolesse, Sens. Actuator B-Chem. 179 (2013) 21.
[10] T. Higashino, S. Nimura, K. Sugiura, Y. Kurumisawa, Y. Tsuji, H. Imahori, ACS Omega 2 (2017) 6958.
[11] M. Hebenbrock, , D. González‐Abradelo, C. A. Strassert, J. Müller, Z. Anorg. Allg. Chem. 644 (2018) 671.
[12] D.-F. Shi, R.T. Wheelhouse, D. Sun, L.H. Hurley, J. Med. Chem. 44 (2001) 4509.
[13] G. Mező, L. Herényi, J. Habdas, Z. Majer, B. Myśliwa-Kurdziel, K. Tóth, G. Csík, Biophys. Chem. 155 (2011) 36.
[14] M. Amiri1, M. Fazli, D. Ajloo, G. Grivani, J. Appl. Chem. 14 (2019) 75.
[15] R. Kuroda, H. Tanaka, J. Chem. Soc., Chem. Commun. 13 (1994) 1575.
[16] V.M. De Paoli, S.H. De Paoli, I.E. Borissevitch, A.C. Tedesco, J. Alloys Compd. 344 (2002) 27.
[17] V.G. Barkhudaryan, G.V. Ananyan, J. Biomol. Struct. Dyn. 33 (2015) 88.
[18] K. Bütje, J.H. Schneider, K. Nakamoto, J.-J.P. Kim, Y. Wang, S. Ikuta, J. Inorg. Biochem. 37 (1989) 119.
[19] L.A. Lipscomb, F.X. Zhou, S.R. Presnell, R.J. Woo, M.E. Peek, R.R. Plaskon, L.D. Williams, Biochemistry 35 (1996) 2818.
[20] M. Sari, J. Battioni, D. Dupre, D. Mansuy, J.B. Le Pecq, Biochemistry 29 (1990) 4205.
[21] M. Bennett, A. Krah, F. Wien, E. Garman, R. Mckenna, M. Sanderson, S. Neidle, Proc. Natl. Acad. Sci. 97 (2000) 9476.
[22] D.H. Tjahjono, S. Mima, T. Akutsu, N. Yoshioka, H. Inoue, J. Inorg. Biochem. 85 (2001) 219.
[23] N. Shahabadi, S. Kashanian, Z. Ahmadipour, DNA Cell Biol. 30 (2011) 187.
[24] Y. Ni, M. Wei, S. Kokot, Int. J. Biol. Macromol. 49 (2011) 622.
[25] W.H. Lawton, E.A. Sylvestre, Technometrics 13 (1971) 617.
[26] E. Reddi, M. Ceccon, G. Valduga, G. Jori, J.C. Bommer, F. Elisei, L. Latterini, U. Mazzucato, Photochem. Photobiol. 75 (2002) 462.
[27] R. Aleeshah, S.Zabihollahzadeh Samakoosh, A. Eslami, J. Iran Chem. Soc. 16 (2019) 1327.
[28] S. Zakavi, A.G. Mojarrad, T.M. Yazdely, Macroheterocycles 5 (2012) 67.
[29] M. Reichmann, S. Rice, C. Thomas, P. Doty, J. Amer. Chem. Soc. 76 (1954) 3047.
[30] M. Aminzadeh, A. Eslami, R. Kia, R. Aleeshah, J. Mol. Struct. 1165 (2018) 267.
[31] R. Tauler, Chemom. Intell. Lab. Syst. 30 (1995) 133.
[32] M. Maeder, Anal. Chem. 59 (1987) 527.
[33] A. de Juan, R. Tauler. Crit. Rev, Anal. Chem. 36 (2006) 163.
[34] J. Jaumot, R. Gargallo, A. de Juan, R. Tauler, Chemom. Intell. Lab. Syst. 76 (2005) 101.
[35] R. Tauler, A. Smilde, B. Kowalski, J. Chemom. 9 (1995) 31.
[36] R. Tauler, B. Kowalski, S. Fleming, Anal. Chem. 65 (1993) 2040.
[37] C.G. Ricci, P.A. Netz, J. Chem. Inf. Model. 49 (2009) 1925.
[38] W. J. Hehre, Acc. Chem. Res. 9 (1976) 399.
[39] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson. J. Comput. Chem. 19 (1998) 1639.
[40] C. Pérez-Arnaiz, N. Busto, J. Santolaya, J.M. Leal, G. Barone, B. García, Biochim. Biophys. Acta 1862 (2018) 522.
[41] S. Bhattacharya, G. Mandal, T. Ganguly, J. Photochem. Photobiol., B 101 (2010) 89.
[42] G. Pratviel, Coord. Chem. Rev. 308 (2016) 460.
[43] M.T. Carter, M. Rodriguez, A.J. Bard, J. Amer. Chem. Soc. 111 (1989) 8901.
[44] J.R. Lakowicz, G. Weber, Biochemistry 12 (1973) 4161.
[45] S. Gandini, I. Borissevitch, J. Perussi, H. Imasato, M. Tabak, J. Lumin. 78 (1998) 53.
[46] N.C. Sabharwal, O. Mendoza, J.M. Nicoludis, T. Ruan, J.-L. Mergny, L.A. Yatsunyk, J. Biol. Inorg. Chem. 21 (2016) 227.
[47] N. Rasouli, F. Fateminasab, Phys. Chem. Res. 3 (2015) 205.
[48] R.F. Pasternack, Chirality 15 (2003) 329.
[49] R. Fiel, J. Howard, E. Mark, N.D. Gupta, Nucleic Acids Res. 6 (1979) 3093.
[50] J. Li, Y. Wei, L. Guo, C. Zhang, Y. Jiao , S.Shuang, C. Dong, Talanta, 76 (2008), 34-39.
[51] A. Laesecke, J.L. Burger, Biorheology 51 (2014) 15.
[52] V.G. Barkhudaryan, G.V. Ananyan, Y.B. Dalyan, S.G. Haroutiunian, J. Porphyr. Phthalocyanines 18 (2014) 594.
[53] M. Arba, R.E. Kartasasmita, D.H. Tjahjono, J. Biomol. Struct. Dyn. 34 (2016) 427.
[54] M.I. Kwak, B.R. Jeon, S.K. Kim, Y.J. Jang, ACS Omega 3 (2018) 946.
[55] C. Romera, L. Sabater, A. Garofalo, I. M. Dixon, G. Pratviel, Inorg. Chem. 49 (2010) 8558.