Synthesis and structural study of two new phosphorus-oxygen compounds belonging to two different families of phosphoriamides and phosphates

Document Type : Original Article

Authors

1 Faculty of Chemistry, Semnan University, Semnan, Iran

2 European Membrane Institute, University of Montpellier, Montpellier, France

Abstract

In the present work, two new phosphorus(V)-oxygen compounds [2-Cl-6-F-C6H3C(O)NH]P(O)[NHC6H3(3,5-CH3)2]2 (compound 1) and [P3O9][(CH3)3CNH3]3 (compound 2), belonging to the families of “phosphoramide” and “cyclo-triphosphate”, respectively, are synthesized and structurally studied by using single-crystal X-ray diffraction analysis. Compounds 1 and 2 crystallize in the monoclinic space group P21/c and the hexagonal space group P63, respectively. The asymmetric unit is composed of one complete phosphoramide molecule for 1 and one t-butyl ammonium cation and one-third of cyclotriphosphate anion for 2. In both structures, phosphorus atom adopts a distorted tetrahedral conformation, in the P(O)(N)3 (for 1) and P(O)4 (for 2) environments. In the crystal structure of 1, a one-dimensional linear arrangement is formed along the a-axis by linking neighboring molecules via normal hydrogen bonds N—H•••O. Further stabilization of this structure as a three-dimensional network is provided by the weak interactions C—H…O═P, C—H…, and C—H…Cl. In the crystal structure of 2, a three-dimensional network is displayed consist of hexagonal units formed by the connection of t-butyl ammonium cations and cyclotriphosphate anions via normal hydrogen bonds N—H•••O.

Keywords


[1] G. R. Desiraju. Angew. Chem. Int. Ed. Engl. 46 (2007) 8342.
[2] T. N. Guru Row. Coord. Chem. Rev. 183 (1999) 81.
[3] C. B. Aakeroy. N. R. Champness and C. Janiak. CrystEngComm. 12 (2010) 22.
[4] K. Biradha. C. Y. Su and J. J. Vittal. Cryst. Growth Des. 11 (2011) 875.
[5] A. K. Gupta. A. K. Srivastava. I. K. Mahawar and R. Boomishankar. Cryst. Growth Des. 14 (2014) 1701.
[6] A. Tarahhomi. A. van der Lee and D. G. Dumitrescu. Z. Kristallogr.–Cryst. Mater. 234 (2019) 401.
[7] M. Sadat Bozorgvar. A. Tarahhomi and A. van der Lee. Z. Kristallogr.–Cryst. Mater. 235 (2020) 69.
[8] W. Yu. E. Li. Z. Lv. K. Liu. X. Guo. Y. Liu and J. Chang. ACS Med. Chem. Lett. 8 (2017) 682.
[9] C. McGuigan. P. Murziani. M. Slusarczyk. B. Gonczy. J. Vande Voorde. S. Liekens and J. Balzarini. J. Med. Chem. 54 (2011) 7247.
[10] T. Miyamoto. T. Kasagami. M. Asai and I. Yamamoto. Pestic. Biochem. Phys. 63 (1999) 151.
[11] N. Umetsu. F. H. Grose. R. Allahyari. S. Abu-El-Haj and T. R. Fukuto. J. Agric. Food Chem. 25 (1977) 946.
[12] Wu X and Hu L. Bioorg. Med. Chem. 24 (2016) 2697.
[13] L. S. B. Upadhyay. IJBT 11 (2012) 381.
[14] W. Kozak. J. Rachon. M. Daśko and S. Demkowicz. Asian J. Org. Chem. 7 (2018) 314.
[15] (a) C. Schultz. Bioorg. Med. Chem. 11 (2003) 885; (b) H. J. Korhonen. L. P. Conway and D. R. W. Hodgson. Curr. Opin. Chem. Biol. 21 (2014) 63.
[16] M. Sebghati. A. Tarahhomi and A. Kozakiewicz. ChemSelect 5 (2020) 185.
[17] Z. Otwinowski and W. Minor, “Methods in Enzymology”, Vol. 276, edited by C. W. Carter Jr & R. M. Sweet, New York: Academic Press, pp. 307 – 326 (1997).
[18] Agilent. CrysAlis PRO, version 1.171.38.43c, Agilent Technologies, Yarnton, Oxfordshire, England (2011).
[19] L. Palatinus and G. Chapuis. J. Appl. Crystallogr. 40 (2007) 786.
[20] P. W. Betteridge. J. R. Carruthers. R. I. Cooper. K. Prout and D. J. Watkin, J. Appl. Crystallogr. 36 (2003) 1487.
[21] A. L. Spek. Acta Crystallogr. Sect. D 65 (2009) 148.
[22] C. F. Macrae. I. J. Bruno. J. A. Chisholm. P. R. Edgington. P. McCabe. E. Pidcock. L. Rodriguez-Monge. R. Taylor. J. van de Streek and P. A. Wood. J. Appl. Crystallogr. 41 (2008) 466.
[23] (a) D. E. C. Corbridge. “Phosphorus an Outline of its Chemistry, Biochemistry and Uses”, Amsterdam: Elsevir, 5th Ed. (1995); (b) F. R. Hartley. “The chemistry of organophosphorus compounds”, John Wiley & Sons., New York (1990).
[24] C. R. Groom. I. J. Bruno. M. P. Lightfoot and S. C. Ward. Acta Crystallogr., Sect. B 72 (2016) 171.