تهیه، شناسایی و کاربرد نانوکاتالیزور مغناطیسی Fe3O4@ CeO2 برای سنتز مشتقات دی ایندولیل اکسیندول

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه پیام نور، تهران

چکیده

با استفاده از روش هیدروترمال از واکنش Fe3O4 با سریم نیترات، نانو ذرات مغناطیسی Fe3O4@ CeO2 با سایز متوسط 19- 28 نانومتر تهیه شد و با طیف‌سنجی مادون‌قرمز تبدیل فوریه (FT-IR) و پراش سنجی اشعه ایکس (XRD) شناسایی شد. پیک مربوط به هرکدام از اکسیدها در IR قابل شناسایی بود و سنتز موفق این نانوکاتالیست به‌وسیله XRD ثابت شد. با بررسی خواص نانوکاتالیزور سنتز شده توسط مغناطیس‌سنجی نمونه مرتعش (VSM)، خاصیت سوپرپارامغناطیسی آن مشخص شد و سایر خواص آن با آنالیزهایی چون میکروسکوپ الکترونی روبشی انتشار میدان (FE-SEM)، طیف‌سنجی پراکندگی انرژی اشعه X (EDS)، تجزیه‌وتحلیل گرماسنجی (TGA) بررسی شد. ساختار پوسته- هسته نانوکاتالیزور حاصل با استفاده از XRD و EDS ثابت شد. بعدازآن Fe3O4@ CeO2 به‌عنوان کاتالیزوری مؤثر در واکنش سنتز سبز مشتقات دی ایندولیل اکسیندولها از واکنش جفت شدن بین مشتقات ایندولها و ایزاتینها در حضور حلال آب مورد استفاده قرار گرفت. شرایط واکنش در حضور کاتالیزورهای مختلف با کاتالیزور ارائه شده در این مقاله مقایسه شد که سرعت و بازده بالا از برتریهای این نانوکاتالیست بود. روش جداسازی آسان (توسط میدان مغناطیسی خارجی)، قابلیت استفاده مجدد در محیط واکنش بدون از دست دادن قابل‌توجه کارایی و غیر سمی بودن، از دیگر مزایای استفاده از این نانوکاتالیست است.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation, characterization and application of magnetic Fe3O4 @ CeO2 nanocatalysts for the synthesis of diindolyloxindole derivatives

نویسندگان [English]

  • hassan hassani
  • zohreh Jahani
Department of Chemistry, Faculty of Basic Sciences, Payam Noor University, Tehran
چکیده [English]

Using hydrothermal method of reaction of Fe3O4 with cerium nitrate, magnetic nanoparticles of Fe3O4 @ CeO2 were prepared with average size 28-29 nm and detected by Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray diffraction (XRD). The peak corresponding to each of the oxides was detectable in IR, and the successful synthesis of this nanocatalyst was confirmed by XRD. By studying the properties of nanocatalysts synthesized by vibrational sample magnetometry (VSM), its superparamagnetic properties were determined and its other properties were analyzed by scanning electron scanning electron microscopy (FE-SEM), X-ray diffraction (EDS) spectroscopy (X-ray diffraction spectroscopy). ) Checked out. The resulting shell – core structure of the nanocatalyst was fixed using XRD and EDS. Subsequently Fe3O4 @ CeO2 was used as an effective catalyst in the reaction of green synthesis of diindolyl oxindole derivatives from the coupling reaction between indole and isatin derivatives in the presence of water solvent. The reaction conditions in the presence of different catalysts were compared with the catalysts presented in this paper, which provided high speed and efficiency of this nanocatalyst. Easy separation (by external magnetic field), reusability in the reaction medium without significant loss of performance and non-toxicity are other advantages of this nanocatalyst.

کلیدواژه‌ها [English]

  • Magnetic Nanoparticles
  • Fe3O4 @ CeO2
  • Nanocatalyst
  • Diindolyl Oxindole
[1]. W. Zhang, Q. Zeng, X. Zhang, Y. Tian, Y. Yue, Y. Guo, Z. Wang, Org. Chem 76 (2011) 4741.
[2]. M. Shokouhimehr, Catalysts 5 (2015) 534.
[3]. E. K. Goharshadi, S. Samiee, and P. Nancarrow, J. Colloid Interface Sci. 356 (2011) 473.
[4]. D. Barreca, G. Bruno, A. Gasparotto, M. Losurdo, and E. Tondello, Mater. Sci. Eng. 23 (2003) 1013.
[5]. F. H. Garzon, R. Mukundan, and E. L. Brosha, Solid State Ionics 136 (2000) 633.
[6]. R. Di Monte, P. Fornasiero, M. Graziani, and J. Kaˇspar, J. Alloys Compd. 275 (1998) 877.
[7]. B. Elidrissi, M. Addou, M. Regragui, C. Monty, A. Bougrine, and A. Kachouane, Thin Solid Films 379 (2000) 23.
[8]. B. G. Wang, B.C. Ma, Q. Wang, W.Wang, Adv. Synth. Catal. 352 (2010) 2923.
[9]. O. Gleeson, R. Tekoriute, Y. K. Gunko, S. J. Connon, Chem. Eur. J. 15 (2009) 5669.
[10]. M. J. Jin, D. H. Lee, Angew. Chem. Int. Ed. 49 (2010) 1119.
[11]. H. Q. Yang, Y. Wang, Y. Qin, Y. Chong, Q. Yang, G. Li, L. Zhang, W. Li, Green Chem. 13 (2011) 1352.
[12]. G. Chouhan, D. Wang, H. Alper, Chem. Commun, (2007) 4809.
[13]. A. S. Singh, U. B. Patil, J. M. Nagarkar, Catal. Commun. 35 (2013) 1116.
[14]. C. W. Lim, I. S. Lee, Nano Today 5 (2010) 412.
[15]. M. Zhu, G. Diao, J. Phys. Chem. 115 (2011) 24743.
[16]. K. K. Senapati, S. Roy, C. Borgohain, P. J. Phukan, Mol. Catal. A: Chem. 352 (2012) 128.
[17]. P. Li, L. Wang, L. Zhang, G. W. Wang, Adv. Synth. Catal. 354 (2012) 1307.
[18]. R. S. Shelkar, S. H. Gund, J. M. Nagarkar, RSC Adv. 4 (2014) 53387.
[19]. A. S. Diez, M. G. Mayer, G. Radivoy, M. A. Volpe, Appl. Catal. A: Gen. 482 (2014) 24.
[20]. A. M. Akondi, R. Trivedi, B. Sreedhar, M. L. Kantam, S. Bhargava, Catal. Today 198 (2012) 3544.
[21]. S. M. Agawane, J. M. Nagarkar, Tetrahedron Lett. 52 (2011) 5220.
[22]. H. Hassani, M. Nasseri, B. Zakerinasab and F.Rafiee, Appl. Organomet. Chem. 30 (2016) 408.
[23]. B. Zakerinasab, M. Nasseri, H. Hassani and M.Samieadel, Res. Chem. Intermed. 42 (2016) 3169.
[24]. M. A. Nasseri, F. Ahrari and B. Zakerinasab, RSC Advances 5 (2015) 13901.
[25]. Z. Yang, Gh. Zhang, J. Zhang and W. Bai, Biosens. Bioelectron. (2014) 268
[26]. Sh. Xuant, Y. Xiang, J.C. Yu and K.Ch. Leung, Langmuir 25 (2009) 11835.
[27]. Y.Xiet, B.Yant, J.Chen. Y.Deng and H.Zeng, App.Mater.Interfaces, 6 (2014) 8845
[28]. R. S. Shelkara, K. E. Balsanea, J. M. Nagarkara, Tetrahedron Lett. 56 (2015) 693.
[29]. G. Neri, A. Pistone, C. Milone, S Galvagno, Appl. Catal. B. 38 (2002) 321.
[30]. J. Akhtara, N. S. Amina, A. Arisb, Chem. Eng. J. 170 (2011) 136
[31]. H. Bao, X. Chen, J. Fang, Z. Jiang, W. Huang, Catal. Lett. 125 (2008) 160.
[32]. G. K. Pradhan, K. M. Parida, Int. J. Eng. Sci. Technol. 2 (2010) 53.
[33]. Y. Kamimura, S. Sato; R. Takahashi, T. Sodesawa, T. Akashi, Appl. Catal. A: Gen 252 (2003) 399.
[34]. M. Nasseri, B. Zakerinasab and M. Samieadel, RSC Advances 4 (2014) 41753.
[35]. R. Bouhfied, N. Joly, F. Ohmani and E. Essassi, Lett.org.chem. 3 (2008).
[36]. S. N. Pandeya, D. Sriram, G. Nath and E, De clercq. Sci. Pharm. 67 (1999)103.
[37]. N. Terzioğlu, N. Karalı, A. Gürsoy, C. Pannecouque, P. Leysen, J. Paeshuyse, J. Neyts and E. De Clercq. Arkivoc (i) 109 (2006).
[38]. S. N. Pandeya, D. Sriram, G. Nath and E. De Clercq, Eur. J. Med. Chem. 35 (2000) 249.
[39]. A. E. Wright, S. A. Pomponi, S. S. Ctross, McCarthy, P. J. J Org Chem, 57 (1992) 4772.
[40]. J. E. M. N. Klein, R. J. K. Taylor, Eur. J. Org. Chem. 34 (2011) 6821.
[41]. T. H. Kang, Y. Murakami, K. Matsumoto, H. Takayama, M. Kitajima, N. Aimi, H. Watanabe, Eur. J. Pharmacol. 455 (2002) 27.
[42]. A. M. Swensen, J. Herrington, R. M. Bugianesi, G. Dai, R. J. Haedo, K. S. Ratliff, M. M. Smith, V. A. Warren, S. P. Arneric, C. Eduljee, D. Parker, T. P. Snutch, S. B. Hoyt, C. London, J. L. Duffy, G. J. Kaczorowski, O. B. McManus, Mol. Pharmacol. 81 (2012) 488.
[43]. J. L. Whatmore, E. Swann, P. Barraja, J. J. Newsome, M. Bunderson, H. D. Beall, J. E. Tooke C. Moody, J. Angiogenesis 5 (2002) 45.
[44]. S. Peddibhotla Curr. Bioactive Compd, 5 (2009) 20.
[45]. C. Abbadie, O. B. McManus, S. Y. Sun, R. M. Bugianesi, G. Dai, R. J. Haedo, J. B. Herrington, G. J. Kaczorowski, M. M. Smith, A. M. Swensen, V. A. Warren, B. Williams, S. P. Arneric, C. Eduljee, T. P. Snutch, E. W. Tringham, N. Jochnowitz, A. Liang, D. Euan MacIntyre, E. McGowan, S. Mistry, V. V. White, S. B. Hoyt, C. London, K. A. Lyons, P. B. Bunting, S. Volksdorf, J. L. Duffy, J. Pharmacol. Exp. Ther. 334 (2010) 545.
[46]. S.S. Pourpanah, S.M. Habibi-Khorassani, M. Shahraki, Chin. J. Catal. 36 (2015) 757.
[47]. F.N. Sadeh, M.T. Maghsoodlou, N. Hazeri, M. Kangani, Res. Chem. Intermed. 41 (2015) 5907.
[48]. Y.B. Wagh, Y.A. Tayade, S.A. Padvi, B.S. Patil, N.B. Patil, D.S. Dalal, Chin. Chem. Lett. 26 (2015) 127
[49]. M.A. Nasseri, B. Zakerinasab, M. Samieadel, RSC Adv. 79 (2014) 41753.
[50]. Zakerinasab, M. A. Nasseri, H. Hassani, M. Samieadel, Res. Chem. Intermed. 42 (2016) 3169.
[51]. R. C. Martins, N. Amaral-Silva, R. M. Quinta-Ferreira, Appl. Catal, B 99 (2010) 135.
[52]. I. Karimzadeh, M. Aghazadeh, T. Doroudi, M.R. Ganjali, P. H. Kolivand. Adv. Phys. Chem. 2017 (2017) 1.
[53]. M. Farahmandjou, M. Zarinkamar. J. Ultrafine Grained Nanostruct. Mater. 48 (2015) 5.
[54]. M. K. Trivedi, A. Branton, D. Trivedi, G. Nayak, K. Bairwa, S. Jana. J. Chromatogr. Sep. Tech. 6 (2015).
[55]. K. S. Loh, Y. H. Lee, A. A. Musa, Z. Ishak. Sensors. 8 (2008) 5775.
[56]. S. J. Iyengar, M. Joy, C. K. Ghosh, S. Dey, R. K. Kotnala, S. Ghosh. RSC Adv. 4 (2014) 64919.
[57]. G. Jayakumar, A. Albert Irudayaraj, A. Dhayal Raj. MMSE Journal. (2017).
[58]. Y. H. Zhou, Z. Zhang, S. Wang, N. Williams, Y. Cheng, S. Luo, J. Gu. Int. J. Hydrogen Energy. 43 (2018) 18745.
[59]. Q. Q. Zhu, L. X. Zhong, L. X. Yang, X. Xu. ECS J. Solid State Sci. Technol. 1 (2012) 119.
[60]. V. Alimohammadi, F. Kashanian, S. A. Seyyed Ebrahimi, M. Habibi Rezaei, A. Bagherpour. Metall. Eng. 21 (2019) 275, (in persian).
[61]. H. Asnaashar, H. Arabi, Nanomatherials 8 (2016) 11, (in persian).
[62]. V. Kandathil, B. D. Fahlman, B. S. Sasidhar, S. A. Patil, S. A. Patil. New J. Chem. 41 (2017) 9531.
[63]. B.V. Subbareddy, N. Rajeswari, Y. Prashanthi, R.J. Ganji and A. Addlagatla, Bioorg. Med. Chem. Lett. 22 (2012) 2460.
[64]. A. Kamal, Y. V. V. Srikanth, M. Naseer A. Khan, T. Basha Shaik and Md. Ashraf, Bioorg. Med. Chem. Lett. 20 (2010) 5229.
[65]. A. R. Khorshidi, k. Tabatabaeian, Ori. J. Chem. 26 (2010) 837.
[66]. K. Nikoofar, M. Hanhighi and Z. Khademi, Arabian J. Chem. (2016).
[67]. M. A. Nasseri, B. Zakerinasab, Iranian JOC 5 (2013) 109.