تهیه و تعیین ساختار بلوری شبه چندریخت کمپلکس نیکل حاوی لیگاند ماکروسیکل شیف‌باز، [NiLCl]Cl•H2O، در دمای پایین، و محاسبه‌ی تاثیر تغییر هالوژن بر روی قطبش‌پذیری و فرا‌قطبش‌پذیری

نوع مقاله : مقاله علمی پژوهشی

نویسنده

گروه شیمی، دانشکده علوم پایه و مهندسی، دانشگاه آزاد اسلامی واحد سنندج، سنندج، ایران

چکیده

ساختار تک بلور کمپلکس [NiLCl]Cl•H2O (2)، (محصول واکنش تراکمی بازروانی 2-(3-(2-فورمیل‌فنوکسی)-2-هیدروکسی‌پروپوکسی)بنزآلدهید و 1و3-دی‌آمینو-2-پروپانول در حضور کلرید نیکل شش‌آبه در حلال متانول)، با استفاده از پراش پرتو Xتعیین شد. محیط کوئوردیناسیون اطراف یون نیکل (II)، هشت وجهی واپیچیده است که توسط دو نیتروژن ایمینی، دو اکسیژن اتری و یک اکسیژن الکلی ماکروسیکل و همچنین یک آنیون کلرید ایجاد می-شود. این کمپلکس شبه چندریخت کمپلکس گزارش شده‌ی [NiLCl]Cl•0.75H2O (1) ]1[ است. در واحد بی‌تقارن هر دو ترکیب، دو مولکول [NiLCl]Cl همراه با مولکول‌های آب شبکه وجود دارد، با این تفاوت که واحد بی‌تقارن ترکیب (1) حاوی یک و نیم مولکول آب است در حالی که واحد بی‌تقارن ترکیب (2) حاوی دو مولکول آب است. ساختارهای کمپلکس (2) و کمپلکس‌های مشابه‌ آن با تغییر کلر به برم و ید، به روش DFT در سطح تئوری B3LYP با استفاده از تابع پایه LANL2DZ برای نیکل و هالوژن، و تابع پایه 6-31G(d,p) برای عناصر کربن، هیدروژن، اکسیژن و نیتروژن بهینه شدند که پارامترهای هندسی محاسباتی توافق خوبی با داده‌های تجربی نظیر، نشان می‌دهند. بر پایه‌ی ساختارهای بهینه شده، قطبش‌پذیری و فرا‌قطبش‌پذیری این سه ترکیب در همان سطح تئوری جهت پیش‌گویی رفتار نوری غیرخطی آنها محاسبه شد که منعکس کننده بزرگی قابل توجه خاصیت نوری غیرخطی آنها نسبت به اوره می‌باشد که با شعاع هالوژن نسبت مستقیم دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and crystal structure determination of the pesudopolymoph nickel complex incorporating macrocyclic Schiff base ligand, [NiLCl]Cl•H2O, at low temperature and calculation of the polarizability and hyperpolarizability by halogen altering

چکیده [English]

The structure of [NiLCl]Cl•H2O (2), which synthesized by condensation reaction of 2-(3-(2-formylphenoxy)-2-hydroxypropoxy)benzaldehyde and 1,3-diamino-2-propanol in the presence of NiCl2•6H2O at methanol, has been determined by single-crystal X-ray diffraction. Distorted octahedral coordination environment around Ni(II) ion is constructed by two imine nitrogen atoms, two ether oxygen atoms, one alcohol oxygen atom, and one chloride anion. The complex (2) is pesudopolymorph for the previously reported [NiLCl]Cl•0.75H2O (1) complex [1]. There are two formula units [NiLCl]Cl per asymmetric unit of both complexes. Each asymmetric unit of (1) and (2) includes two water molecules of crystallization, although one of the two water molecules in (1) has half-site occupancy. The optimized structure of (2) and similar compounds by Cl replacement with Br and I in DFT/B3LYP level of theory using LANL2DZ (for nickel and halogen) and 6-31G(d,p) (for the other elements) basis sets illustrate good agreement with experimental ones. Based on optimized structures of three compounds, their polarizability and hyperpolarizability were calculated at the same level to predict their nonlinear optical(NLO) properties. The calculated NLO values of the compounds are much greater than the corresponding value of urea.

کلیدواژه‌ها [English]

  • macrocycle
  • Schiff base
  • crystal structure
  • nickel
  • pesudopolymorph
  • nonlinear optical property
[1] A.A. Khandar, S.A. Hosseini-Yazdi, M. Khatamian, P. McArdle and S.A. Zarei, Polyhedron 26 (2007) 33.
[2] X. Liu and J.R. Hamon, Coord. Chem. Rev. 389 (2019) 94.
[3] (a) M. Rezaeivala, M. Bayat and H. Keypour, Appl. Chem. J. 46 (2019) 353, in Persian. (b) M. Mahjoobizadeh, R. Takjoo and J.T. Mague, Iran. J. of Crystallography and Mineralogy 26 (2018) 479, in Persian. (c) S. Mohseni, P. Bazyari, M. Tabatabaei, M. Ghasemzadeh and B. Nimoller, Iran. J. of Crystallography and Mineralogy 24 (2016) 473, in Persian.
[4] (a) H. Keypour, M.H. Zebarjadyan, M. Rezaeivala and S. Salehzadeh, Appl. Chem. J. 51 (2019) 297, in Persian. (b) R. Hernandez-Molina and A. Mederos, Comprehensive Coord. Chem. II 1 (2003) 446.
[5] S. Kedy, N. Almhna, and F. Kandil, Arab. J. Chem. 8 (2015) 93.
[6] M. Aidi, H. Keypour, A. Shooshtari, M. Bayat, L. Hosseinzadeh, H. Amiri Rudbari and R.W. Gable, Inorg. Chim. Acta 490 (2019) 294.
[7] A.G. Bharathi, T.D. Prakash, A.G. Kumar, P.S. Rajam, V.V. Dhayabaran and R. Rajaram, J. Photochem. Photobiol. B: Biol. 183 (2018) 191.
[8] Y. He and C. Cai, Catal. Commun. 12 (2011) 678.
[9] C.X. Ding, C.H. He and Y.S. Xie, Chin. Chem. Let. 24 (2013) 463.
[10] C.X. Ding, J. Ni, C.H. He, F.H. Zeng, W.H. Zhu and Y.S. Xie, Inorg. Chem. Commun. 14 (2011) 370.
[11] Z. Chu and W. Huang, Inorg. Chem. Commun. 11 (2008) 1166.
[12] M.V.Vijisha, J. Ramesh, C. Arunkumar and K. Chandrasekharan, Optic. Mater. 98 (2019) 109474.
[13] E. Shakerzadeh, Appl. Chem. J. 47 (2019) 187, in Persian.
[14] W.K. Dong, X.L. Li, L. Wang, Y. Zhang and Y.J. Ding, Sensors Actuators B Chem. 229 (2016) 370.
[15] S.D. Bella and I. Fragala, Eur. J. Inorg. Chem. (2003) 2606.
[16] M. Etefagh, J. Solaimannejad, S. Sedghinia and C. Graiff, Iran. J. of Crystallography and Mineralogy 27 (2019) 459, in Persian.  
[17] J. Solaimannejad, S. Sedghinia and M. Nasibipour, Iran. J. of Crystallography and Mineralogy 25 (2017) 673, in Persian.
[18] S.A. Zarei, A.A. Khandar, M. Khatamian, S.A. Hosseini-Yazdi, I. Dechamps, E. Guillon and M. Piltan, Inorg. Chim. Acta 394 (2013) 348.
[19] (a) J. Solaimannejad, F. Moghtazi and H.O. Onz, Iran. J. of Crystallography and Mineralogy 24 (2016) 557, in Persian. (b) T.L. Threlfall, Analyst 120 (1995) 2435.   
[20] Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
[21] C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez, R. Taylor, J. Streek and P.A. Wood, J. Appl. Cryst. 41 (2008) 466.
[22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[23] K. Akhtari, K. Hassanzadeh, B. Fakhraei, H. Hassanzadeh, G. Akhtari and S.A. Zarei, Theor. Chem. 1038 (2014) 1.
[24] S.K. Pati, S. Ramasesha, Z. Shuai and J.L. Bredas, Phys. Rev. B 59 (1999) 14827.