سنتزهیدروژل زیست سازگار بر پایه پلی اتیلن گلیکول با روش شیمی کلیک و استفاده از آن برای رهایش علف کش 2 و4 –دی کلرو فنوکسی استیک اسید

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 زنجان، دانشگاه زنجان، دانشکده علوم، گروه شیمی

2 پژوهشکده میوه های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی کشو، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

چکیده

درپژوهش حاضر، با استفاده از روش شیمی کلیک، هیدروژ ل های زیست سازگار بر پایه پلی اتیلن گلیکول با جرم های مولکولی 2000 و 4000 گرم بر مول سنتز شد. برای این منظور، پیش ماده ها با گروه های عاملی آزیدی و آلکینی عامل دار شدند و در ادامه هیدروژل ها با واکنش جفت شدن بین گروه های آزیدی و آلکینی در حضورکاتالیست سولفات مس و سدیم آسکوربات سنتز شدند. بررسی مورفولوژی این هیدروژل ها بخوبی ساختار شبکه ای آنها را نشان داد. بررسی رفتار تورمی این هیدروژل ها نشان داد که با کاهش جرم مولکولی پلی اتیلن گلیکول، درجه تورم کاهش می یابد. از این هیدروژل ها برای بارگذاری داروی علف کش 2و4- دی کلرو فنوکسی استیک اسید استفاده شد. نتایج بدست آمده نشان داد که سرعت و میزان رهایش داروی علف کش با کاهش جرم مولکولی پلی اتیلن گلیکول، کاهش نشان می دهد. بعبارت دیگر، میزان رهایش علف کش از 80% برای هیدروژل با پلی اتیلن گلیکول 4000 به 55% برای هیدروژل با پلی اتیلن گلیکول 2000 کاهش می یابد. هیدروژل ها در محیط بافری خنثی پایداری خوبی از خود نشان دادند. همچنین مشاهده شد که رهایش دارو در هر دو نمونه از ساز و کار غیر فیکی پیروی می کند.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Biocompatible polyethylene glycol based hydrogel via Click Chemistry for the release of 2, 4-dichlorophenoxy acetic acid (2, 4-D) Herbicide

نویسندگان [English]

  • Manizhe Babaee 1
  • Shokrollah Hajivand 2
  • Sohrab Rahmani 1
1 Zanjan, Zanjan University, Faculty of Science, Department of Chemistry
2 Research Institute of Temperate and Cold-Sea Fruits, Kesho Horticultural Science Research Institute, Agricultural Education and Extension Research Organization, Karaj, Iran
چکیده [English]

In the present study, biocompatible hydrogels based on polyethylene glycol with molecular weights 2000 and 4000 g/mol was synthesized by using click chemistry (Azide – Alkyne coupling). For this Perouse, the precursors were functionalized with azide and alkyne functional groups and then the hydrogels were synthesized by coupling reaction between azide and alkyne groups in the presence of copper sulfate and ascorbate sodium catalyst. Investigation of the morphology of these hydrogels well illustrated their network structure. The study of the swelling behavior of these hydrogels showed that the degree of swelling decreases with decreasing of polyethylene glycol molecular weight. These hydrogels were loaded with 2,4-dichlorophenoxy acetic acid herbicide. The obtained results showed that the rate and amount of herbicide release decrease with decreasing of polyethylene glycol molecular weight. In other words, the release amount of the herbicide decreases from 80% for the hydrogel with polyethylene glycol 4000 to 55% for the hydrogel with polyethylene glycol 2000. Hydrogels showed good stability in neutral buffer medium. It was also observed that drug release in both samples followed a non-Fickian mechanism.

کلیدواژه‌ها [English]

  • Hydrogel
  • Click chemistry
  • Controlled release
  • 2
  • 4-dichlorophenoxy acetic acid. Azide - alkyne coupling
[1] D. H. Garabrant, M. A. Philbert, Crit. Rev. Toxicol. 32 (2002) 233.
[2] C. J. Burns, G. M. H. Swaen, Crit. Rev. Toxicol. 42 (2012) 768.
[3] B. Bukowska, Pol. J. Environ. Stud. 15 (2006) 365.
[4] F. Puoci, F. Iemma, U. G. Spizzirri, G. Cirillo, M. Curcio, N. Picci, American Journal of Agricultural and Biological Sciences, 3 (2008) 299.
[5] S. Dubey, V. Jhelam, P. K. Patanjali, Journal of scientific & Industrial research, 70 (2011) 105.
[6] L. O. Ekebafe, D. E. Ogbeifun, F. E. Okieimen, Biokemistri, 23 (2011) 81.
[7] A. Kharine, S. Manohar, R. Section, R.G.M. Kolkman, R.A. Bolt, W. Steenberger, F.F. Demull, Phys. Med. Biol. 48 (2003) 357.
[8] N.A. Peppas, W. Leobandung, J. Biomat. Sci. Polym. Ed. 15 (2004) 125.
[9] El-E. Kenawy, M. Sakran, J. Appl. Polym. Sci. 80 (2001) 415.
[10] M.J. Davies, Trends Biotechnol. 19 (2001) 489.
[11] S. Tashima, S. Shimada, I. Ando, K. Matsumoto, R. Takeda, T. Shiraishi, J. Pest Sci. 25 (2000) 128.
[12] J. Liu, S. Lin, E. Liu, L. Li, Int. J. Pharmaceut.  298 (2005) 117.
[13] M.M. Vidal, O.M.S. Filipe, M.C. Cruz Costa, J. Chem. Educ. 83 (2006) 245.
[14] A. Hekmat, A. Barati, E.V. Frahani, A. Afraz, World Acad. of Sci. Engg. Technol. 56 (2009) 96.
[15] R. Celis, M.C. Hermosin, M.J. Carrizosa, J. Cornejo, J. Agric. Food Chem. 6 (2002) 2324.
[16] R.D.J. Solomon, V.S. Santhi, J. Agronomy 6 (2007) 370.
[17] A. Roy, J. Bajpai, A.K. Bajpai, Ind. J. Chem. Technol.16 (2009) 388.
[18] A. Roy, S. K. Singh, J. Bajpai, A.K. Bajpai, Cent. Eur. J. Chem. 12 (2014) 453.
[19] G. Tao, R. Cai, Y. Wang, H. Zuo, H. He, Mater. Sci. Eng. C. 119 (2021) 111597.
[20] Z. Ali Mardan; M. Darabi, J. Of Applied Chemistry,10 (2015) 29.
[21] G. Rezanejade Bardajee, a. monfared, M. R. Rezaei, J. Of Applied Chemistry, Articles in Press, Accepted Manuscript, Available Online from 17 April 2021.
[22] D. Das, P. Prakash, P. K. Rout, S. Bhaladhare, Starch, 73 (2021) 1900284.   
[23] R. Michalik, I. Wandzik, Polymers, 12 (2020) 2425.
[24] R. A. Ramli, Polym. Chem, 10 (2019) 6073.
[25] J. J. Perez Bravo, N. J. François, J. Polym. Environ., 28 (2020) 2681.
[26] M. Behrouzi, P. Najafi Moghadam, Carbohydr. Polym., 202 (2018) 227.
[27] Y. Shen, H. Wang, W. Li, Z. Liu, Y. Liu, H. Wei, J. Li, Int. J. Biol. Macromol.164 (2020) 557.
[28] M. M. Iftimea, G. L. Ailieseia, E. Ungureanub, L. Marin, Carbohydr. Polym., 223 (2019) 115040.
[29] M. v. Dijk, D. T. S. Rijkers, R. M. J. Liskamp, C. F. Van Nostrum, W. E. Hennink, Bioconjugate Chem. 20 (2009) 2001.
[30] M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingsbury, C. J. Hawker, Chem. Commun., (2006) 2774.
[31] V. Crescenzi, L. Cornelio, C. Di Meo, S. Nardecchia, R. Lamanna, Biomacromolecules, 8 (2007) 1844.
[32] Y. Yuan, A-K. Zhang, J. Ling, L-H. Yin, Y. Chen, G-D. Fu, Soft Matter, 9 (2013) 6309.
[33] M. Saidi, A. Dabbaghi, S. Rahmani, Polym. Bull., 77 (2020) 3989.
[34] Y. Zare, A. Dabbaghi, S. Rahmani, Polym. Adv. Techno., 30 (2019) 2790.
[35] A. Dabbaghi, S. Rahmani, Polym. Adv. Techno., 30 (2019) 368.
[36] S. Hiki, K. Kataoka, Bioconjugate Chem., 18 (2007) 2191.
[37] J. Zhu, X. Zhu, E.T.Kang, K.G.Neoh, Polymer, 48 (2007) 6992.