تعیین داروی سلکوکسیب با استفاده از روش میکرواستخراج فاز جامد پخشی جفت شده با اسپکتروفوتومتری مرئی و ماورای بنفش در نمونه های شیر، ادرار و آب

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد مشهد، مشهد‌، ایران

چکیده

چکیده
یک میکرواستخراج فاز جامد پخشی (DμSPE) ، آسان و ارزان همراه شده با روش اسپکتروفتومتری ماواری بنفش-مرئی برای اندازه گیری سلکوکسیب در نمونه های بیولوژیکی و آب توسعه داده شد. برای این منظور ، یک جاذب جدید (نانوذرات نیکل دوپ شده دراکسید گرافن کربوکسیل دار) با استفاده از یک روش شیمیایی ساده سنتز و برای استخراج سلکوکسیب استفاده شد. عوامل موثر در روش DμSPE با روش طراحی آزمایش ارزیابی و بهینه سازی شدند. دو طرح ، شامل طرح Plackett-Burman و Box-Behnken ، به ترتیب برای غربالگری و بهینه سازی عوامل موثر استفاده شدند.این روش در محدوده غلظت 0.004-3.5 میکروگرم بر میلی لیتر با R2 = 0.9951 برای اندازه گیری سلکوکسیب در شرایط بهینه خطی بود. حد تشخیص کمی روش 0.004میکروگرم بر میلی لیتر و فاکتورغنی سازی 21.7 بود. انحراف استاندارد نسبی برای پنج اندازه گیری محلول استاندارد سلکوکسیب با غلظت 0.3 میکروگرم بر میلی لیتر 3.2٪ محاسبه شد. سرانجام ، از روش پیشنهادی برای تجزیه و تحلیل نمونه های حقیقی مانند نمونه های شیر ، ادرار و آب لوله کشی استفاده شد ، این روش برای اندازه گیری سلکوکسیب در نمونه های حقیقی با بازیافت در محدوده 90.3-96.8٪ و انحراف استاندارد نسبی کمتر از 5.1 بسیار مناسب است. از مزایای مهم این روش می توان به سادگی و ارزانی روش ، مصرف کم حلال و جاذب و عدم نیاز به ابزار پیچیده و گران قیمت اشاره کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of celecoxib with a dispersive micro solid-phase extraction coupled with UV-Vis spectrophotometric method in milk, urine and water samples

نویسندگان [English]

  • Mahboubeh Masrournia
  • Ghufran Abbood
Department of Chemistry, Faculty of Basic Sciences, Islamic Azad University, Mashhad Branch, Mashhad, Iran
چکیده [English]

A sensitive, straightforward, and inexpensive dispersive micro solid-phase extraction (DµSPE) coupled with the spectrophotometric method was developed for measuring celecoxib in biological and water samples. For this purpose, a new sorbent (Nickel nanoparticles doped carboxyl graphene oxide) was synthesized using a simple chemical procedure and was utilized to extract celecoxib. The effective factors in the DµSPE procedure were evaluated and optimized by the design of experiment method. Two designs, including the Plackett-Burman design and Box-Behnken design, were applied to screening significant factors and to optimize the significant factors, respectively. The DµSPE- spectrophotometric method was linear in the concentration range of 0.004-3.5 µg mL-1 with an R-squared of 0.9951 for the celecoxib measurement under the optimum conditions. The method showed a low limit of detection of 0.004 µg mL-1 and a suitable enrichment factor of 21.7 for the analyte determination. The relative standard deviation was calculated for five measurements of the standard solution of celecoxib with a concentration of 0.3 µg mL-1 and was 3.2%. Finally, the proposed method was used to analyze real samples such as milk, urine, and tap water samples, indicating that the method is very suitable for measuring celecoxib in real samples with a recovery in the range of 90.3-96.8% with a relative standard deviation lower than 5.1 %. The important advantages of the method are simple and inexpensive procedure, low desorption solvent and sorbent consumption, and without the need for sophisticated and expensive instruments.

کلیدواژه‌ها [English]

  • Celecoxib
  • Dispersive micro solid-phase extraction
  • Spectrophometric method
  • Milk sample
  • Urine sample
  • Design of experiment
[1] S. Wongrakpanich, A. Wongrakpanich, K. Melhado, Aging Dis. 9 (2018) 143.
[2] A. Aghazadeh-Habashi, W. Asghar, F. Jamali., Journal of pharmaceutical sciences, J. Pharm. Sci. 107 (2018) 756.
[3] L. Gong, C.F. Thorn, M.M. Bertagnolli, T. Grosser, R.B. Altman, T.E. Klein, Pharmacogenet. Genomics, 22 (2012) 310.
[4] D.-G. Han, J. Kwak, S.-W. Seo, J.-M. Kim, J.-W. Yoo, Y. Jung, Y.-H. Lee, M.-S. Kim, Y.-S. Jung, H. Yun, Pharmaceutics, 11 (2019) 382.
[5] S. Ansari,  Anal. Methods, 9 (2017) 3200.
[6] M. Attimarad, K.N. Venugopala, N. SreeHarsha, B.E. Aldhubiab, A.B. Nair, Microchem. J. 152 (2020) 104365.
[7] M.A. Abdel Hamid, M.M. Mabrouk, M.A. Michael, J. Sep. Sci. 43 (2020) 3197.
[8] K. Attia, M. Nassar, A. El-Olemy, S. Ramzy, J. Adv. Pharm. Res. 2 (2018) 133.
[9] A. Ashour, M.A. Hegazy, M. Abdel-Kawy, M.B. ElZeiny, J. Saudi Chem. Soc. 19 (2015) 186-.
[10] N.S. Abdullah, M.A. Hassan, R.O. Hassan,  Arab. J. Chem. 10 (2017) S3426.
[11] N. Khoddami, F. Shemirani,   Talanta, 146 (2016) 244.
[12] A. Asfaram, M. Ghaedi, K. Dashtian, Ultrason. Sonochem, 34 (2017) 640.
[13] S. Hamidi, A. Azami, E.M. Aghdam,  Clinica Chimica Acta, 488 (2019) 179.
[14] S. Chen, J. Yan, J. Li, D. Lu, Microchem. J. 147 (2019) 232.
[15] A. Chisvert, S. Cárdenas, R. Lucena,  TrAC Trends Anal. Chem. 112 (2019) 226.
[16] M. Ghorbani, M. Aghamohammadhassan, H. Ghorbani, A. Zabihi,  Microchem. J. 158 (2020) 105250.
[17] H. Ahmad, M. Fan, D. Hui,  Compos. B: Eng. 145 (2018) 270.
[18] W. Yu, L. Sisi, Y. Haiyan, L. Jie,  RSC Adv. 10 (2020) 15328.
[19] M. Bahmaie, L. Abbasi, M. Faraji, J. of Applied Chemistry, 26 (1392) 29, In Persion. doi.org/10.22075/chem.2017.633
[20] M. Ghorbani, O. Seyedin, M. Aghamohammadhassan.,J. Environ. Manage. 254 (2020) 109814.
[21] R. Mirzajani,S.Karami,  J. of Applied Chemistry, 58 (1400) 47, In Persion.
[22] A. Azzouz, S.K. Kailasa, S.S. Lee, A.J. Rascón, E. Ballesteros, M. Zhang, K.-H. Kim,  TrAC Trends Anal. Chem. 108 (2018) 347.
[23] J.Y. Lim, N. Mubarak, E. Abdullah, S. Nizamuddin, M. Khalid, J. Ind. Eng. Chem. 66 (2018) 29.
[24] W.-T. Li, W. Shi, Z.-J. Hu, T. Yang, M.-L. Chen, B. Zhao, J.-H. Wang, Appl. Surf. Sci. (2020) 147254.
[25] M. Hemmati, M. Rajabi, A. Asghari., Microchim. Acta. 185 (2018) 160.
[26] A. Ismailzadeh, M. Masrournia, Z. Es’haghi, M.R. Bozorgmehr,  Chem. Papers. 74 (2020) 2929.
 [27] N. Nazari, M. Masrournia, Z. Es′ haghi, M. Bozorgmehr,   J.  Sep. Sci. 39 (2016) 3046.
[28] A.-T. Mohammad, A.S. Abdulhameed, A.H. Jawad. B, Int. J. Biol. Macromol. 129 (2019) 98.
[29] H. Barabadi, S. Honary, P. Ebrahimi, A. Alizadeh, F. Naghibi, M. Saravanan, Inorg. Nano-Met. Chem. 49 (2019) 33.
[30] S.V. Gomes, L.A. Portugal, J.P. dos Anjos, O.N. de Jesus, E.J. de Oliveira, J.P. David, J.M. David, Microchem. J. 132 (2017) 28.
[31] V. Singh, A. Soni, R. Singh,  J. Environ. Biol., 38 (2017) 849.
[32] A. Czyrski, H. Jarzębski,   Processes, 8 (2020) 473.
[33] O.S. Stamenković, M.D. Kostić, D.B. Radosavljević, V.B. Veljković,  Period. Polytech. Chem. Eng. 62 (2018) 359.
[34] F.S.G. Praça, M.V.L.B. Bentley, M.G. Lara, M.B.R., Biomed. Chromatogr. 25 (2011) 1237.
[35] P. Ptáček, J. Klíma, J. Macek, J. Chromatogr. B, 899 (2012) 163.
[36] A. Morovati, H. Ahmad Panahi, F. Yazdani., Int. J. Pharm. 513 (2016) 62.
[37] M. Arabi, M. Ghaedi, A. Ostovan, J. Tashkhourian, H. Asadallahzadeh, Ultrason. Sonochem. 33 (2016) 67.
[38] S. Ansari, A. Ghorbani., J. Chem. Health Risks, 7 (2017).