اندازه‌گیری مقادیر کم منیزیم(II) با استفاده از یک حسگر پتانسیومتری برپایه یون‌دوست کوتیاپین

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی واحد یادگار امام خمینی(ره) شهر ری، تهران، ایران

2 گروه شیمی، دانشکده علوم پایه، واحد یادگار امام خمینی (ره) شهرری، تهران، ایران

چکیده

در این مطالعه یک الکترود گرافیتی روکش‌دار شده بر پایه داروی کوتیاپین به عنوان یک مبادله کننده یونی خنثی برای اندازه گیری منیزیم(II) ساخته شد. حسگر طراحی شده شیبی نزدیک به شیب نرنستی (mV. Decade-1 2/30) در گستره وسیع خطی 7-10×1 تا 2-10×1 مولار از خود نشان داد، حد تشخیص الکترود نیز 8-10×8 مولار بود. گزینش پذیری الکترود در برابر 24 کاتیون دیگر با روش پتانسیل همتا شده مورد بررسی قرار گرفت و مزاحمتی از جانب سایر یون ها ملاحظه نشد. الکترود طراحی شده در محلول‌های غیر آبی، شیب نرنستی و گستره خطی خود را در حضور 20 درصد از حلال های آلی به خوبی حفظ کرد. زمان پاسخ دهی و طول عمر الکترود به ترتیب 5 ثانیه و 3 ماه به دست آمد. پاسخ پتانسیلی الکترود در گستره pH 0/3 تا 0/8 مستقل از pH بود. در نهایت، عملکرد حسگر پیشنهادی به عنوان الکترود شناساگر در تیتراسیون پتانسیومتری با EDTA و هم چنین اندازه‌گیری منیزیم در چند فرآورده دارویی به عنوان نمونه حقیقی مورد بررسی قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Determination Trace Amounts of Magnesium (II) by a Potentiometric Sensor Based on Quetiapine as an Ionophore

نویسندگان [English]

  • Mohammad Reza Jalali Sarvestani 1
  • Zohreh Doroudi 2
1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
2 PhD in Analytical Chemistry, Assistant Professor of Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In this research, a coated graphite electrode based on quetiapine as a neutral ion carrier was constructed for determination of Mg2+. The designed sensor demonstrates an ideal Nernstian slope (30.2 mV. Decade-1) over a wide concentration range (1×10-7- 1×10-2 M). The detection limit of the proposed sensor was 8×10-8 Mol L-1. The selectivity of the sensor was evaluated over 24 different cations by matched potential method and no serious interference was observed from them. The designed electrode could also be used in partially non aqueous mediums up to the presence of 20% of organic solvents without any tangible change in Nernstian slope and linearity domain. The response time and life span of the proposed electrode were 5s and 3 months respectively. The potential response of the sensor was independent from pH in the pH range of 3.0-8.0. At the end, the applicability of the designed sensor as an indicator electrode in potentiometric titration of Mg2+ with EDTA and determination of magnesium in some pharmaceutical products as real samples was also evaluated.

کلیدواژه‌ها [English]

  • Magnesium
  • Quetiapine
  • Potentiometry
  • Ion selective electrode
[1] J. Lenik, and C. Wardak. Procedia. Eng. 47 (2012) 144.
[2] P. ReddyPrasad and T. Imae. J. Taiwan. Inst. Chem. Eng. 72 (2017) 194.
[3] Y. Fan, C. Xu, R. Wang, G. Hu, J. Miao, K. Hai and C. Lin. J. Food. Compos. Anal. 62 (2017) 63.
[4] H. Jingui, L. Yong, X. Xiangxin, R. Hongqiang, X. HUANG and Y. He. J. Rare. Earth. 35 (2017) 934.
[5] M. Pięk, K. Fendrych, J. Smajdor, R. Piech and B. Paczosa-Bator. Talanta. 170 (2017) 41.
[6] A. Benvidi, M. Elahizadeh, Reza Zare, Hamid and R. Vafazadeh. J. Iran. Chem. Soc. 1 (2008) 103.
[7] A. Benvidi, M. Elahizadeh, H.R. Zare and R. Vafazadeh. Anal. Lett. 44 (2011) 595.
[8] A. Benvidi, M.T. Ghanbarzadeh, M. Dehghan, M. Mazloum-Ardakani and R. Vafazadeh. Chin. Chem. Lett. 25 (2014) 1639.
[9] A. Benvidi, M.T. Ghanbarzadeh, M. Mazloum-Ardakani and R. Vafazadeh. Chin. Chem. Lett. 22 (2011) 1087.
[10] M. Abbasghorbani. J. Appl. Chem. 14 (2019) 77.
[11] A. Shirzadmehr, H. Bagheri. J. Appl. Chem. 13 (2018) 197.
[12] E. Golmaghani, M. Fazli, A. Bagheri. J. Appl. Chem. 13 (2018) 269.
[13] T. Guinovart, D. Hernández-Alonso, L. Adriaenssens, P. Blondeau, F.X. Rius, P. Ballester and F.J. Andrade. Biosens. Bioelectron. 87 (2017) 587.
[14] N.K. Joon, N. He, M. Wagner, M. Cárdenas, J. Bobacka and G. Lisak. Electrochim. Acta. 252 (2017) 490.
[15] M.R. Jalali Sarvestani and Z. Doroudi. Adv. J. Chem. A. 3 (2020) 740.
[16] M.R. Jalali Sarvestani and Z. Doroudi. J. Chem. Lett. 1 (2020) 63.
[17] M.R. Jalali Sarvestani, L. Hajiaghababaei, J. Najafpour and S. Suzangarzadeh. Anal. Bioanal. Chem. 10 (2018) 675.
[18] R. Ahmadi and M. Jalali Sarvestani. Russ. J. Phys. Chem. B.  14 (2020) 198.
[19] T.A. Ali, G.G. Mohamed, M. Omar and N.M. Hanafy. J. Ind. Eng. Chem. 47 (2017) 102.
[20] A. Mohasseb. Int. J. New. Chem.  6 (2019) 215.
[21] R. Moladoust. J. Chem. Lett.  2 (2019) 151.
[22] S.M. Hamza, N.M. Rizk and H.A. Matter. Arab. J. Chem. 10 (2017) S236.
[23] A. Sharifi, L. Hajiaghababaei, S. Suzangarzadeh and M.R. Jalali Sarvestan. Anal. Bioanal. Electrochem. 9  (2017) 888.
[24] M.R. Jalali Sarvestani and R. Ahmadi. Anal. Bioanal. Chem. Res. 5 (2018) 273.
[25] M.R. Jalali Sarvestani and R. Ahmadi. J. Appl. Chem. Res. 13 (2019) 18.
[26] S. Baniwal, S. Chandra, A. Panwar and A. Singh. Talanta. 50 (1999) 499.
[27] V. Gupta, R. Prasad and A. Kumar. Talanta. 63 (2004) 1027.
[28] P. Kumar and Y.-B. Shim. J. Electroanal. Chem. 66 (2011) 25.
[29] N. Hajizadeh. Int. J. New. Chem. 6 (2019) 198..
[30] R. Hamed, R. AlJanabi, S. Sunoqrot and A. Abbas. Drug Dev. Ind. Pharm. 43 (2017) 1330.
[31] N. Rajendraprasad, K. Basavaiah and K.B. Vinay. Croat. Chem. Acta. 85 (2012) 9.
[32] J. Leentvaar and M. Rebhun. Water Res. 16 (1982) 655.
[33] K.L. Cheng and K. Cheng. Microchim. Acta. 62 (1974) 385.
[34] A. Jain, V. Gupta, L. Singh and J. Raisoni. Electrochim. Acta. 51 (2006) 2547.
[35] M. Javanbakht, A. Badiei, M.R. Ganjali, P. Norouzi, A. Hasheminasab and M. Abdouss. Anal. Chim. Acta. 601 (2007) 172.
[36] K. Sugisawa, T. Kaneko, T. Sago and T. Sato. J. Pharm. Biomed. Anal. 49 (2009) 858.
[37] M. Saleh. J. Electroanal. Chem. 373 (1994) 89.
[38] V.K. Gupta, S. Chandra and R. Mangla. Sensor. Actuat. B. Chem. 86 (2002) 235.