[1] Aldemir Dikici, B., Claeyssens, F. (2020). Basic principles of emulsion templating and its use as an emerging manufacturing method of tissue engineering scaffolds. Frontiers in Bioengineering and Biotechnology, (8), 875.
[2] Brusotti, G., Calleri, E., Milanese, C., Catenacci, L., Marrubini, G., Sorrenti, M., Girella, A., Massolini, G., Tripodo G. (2016). Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polymer Chemistry, (7), 7436-7445.
[3] Aldemir Dikici, B. (2020). Development of emulsion templated matrices and their use in tissue engineering applications, University of Sheffield, 2020.
[4] Zhang, T., Silverstein, M.S. (2019). Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer. Polymer, (168) 146-154.
[5] Silverstein, M.S. (2014). Emulsion-templated porous polymers: A retrospective perspective Polymer, (55) 304-320.
[6] Silverstein, M.S. (2014). PolyHIPEs: Recent advances in emulsion-templated porous polymers. Progress in Polymer Science, (39) 199-234.
[7] Zhang, H., Cooper, A. (2002). Synthesis of monodisperse emulsion-templated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. Chemistry of materials, (14) 4017-4020.
[8] Barbetta, A., Barigelli, E., Dentini,M. (2009). Porous alginate hydrogels: synthetic methods for tailoring the porous texture. Biomacromolecules, (10) 2328-2337.
[9] Rao, K.M., Anbananthan, N., Rajulu, A.V. ( 2011). Bicontinuous highly cross-linked poly (acrylamide-co-ethyleneglycol dimethacrylate) porous materials synthesized within high internal phase emulsions. Soft Matter, (7) 10780-10786.
[10] Fan, X., Zhang, S., Zhu, Y., Chen, J. (2018). Macroporous polymers prepared via frozen UV polymerization of the emulsion-templates stabilized by a low amount of surfactant. RSC advances, (8) 10141-10147.
[11] Gong, X., Rohm, K., Su, Z., Zhao, B., Renner, J., Manas-Zloczower, I., Feke, D.L. (2020). Porous hydrogels templated from soy-protein-stabilized high internal phase emulsions. Journal of Materials Science, (55) 17284-17301.
[12] Zhu, Y., Zheng, Y., Wang, F., Wang, A. (2016). Monolithic supermacroporous hydrogel prepared from high internal phase emulsions (HIPEs) for fast removal of Cu2+ and Pb2+. Chemical Engineering Journal, (284) 422-430.
[13] Althubeiti, K.M., Horozov, T.S. (2019). Efficient preparation of macroporous poly (methyl methacrylate) materials from high internal phase emulsion templates. Reactive and Functional Polymers, (142) 207-212.
[14] Naranda, J. , Sušec, M., Maver, , Gradišnik, L., Gorenjak, M., Vukasović, A., Ivković, A., Rupnik, M.S., Vogrin, M. Krajnc, P. (2016). Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Scientific reports, (6) 1-11.
[15] Krajnc, P., Leber, N., Štefanec, D., Kontrec, S., Podgornik, A. (2005). Preparation and characterisation of poly (high internal phase emulsion) methacrylate monoliths and their application as separation media. Journal of Chromatography A, (1065) 69-73.
[16] Kulkarni, R.V., Inamdar, S.Z., Das, K.K., Biradar, M.S. (2019). Polysaccharide-based stimuli-sensitive graft copolymers for drug delivery, Polysaccharide Carriers for Drug Delivery. Elsevier. 155-177.
[17] Li, J., Mooney, D.J. (2016). Designing hydrogels for controlled drug delivery. Nature Reviews Materials, (1) 1-17.
[18] Barbetta, A., Dentini, M., Zannoni, E.M., De Stefano, M.E. (2005). Tailoring the porosity and morphology of gelatin-methacrylate polyHIPE scaffolds for tissue engineering applications. Langmuir, (21) 12333-12341.
[19] Myers, D. (2005). The organic chemistry of surfactants, Surfactant Science and Technology, John Wiley & Sons, Inc, 29-79.
[20] Behrouzi, M., Moghadam, P.N. (2018). Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth. Carbohydrate polymers, (202) 227-235.
[21] Stancu, I.-C., Lungu, A., Dragusin, D.M., Vasile, E., Damian, C., Iovu, H. (2013). Porous gelatin-alginate-polyacrylamide scaffolds with interpenetrating network structure: synthesis and characterization. Soft Materials, (11) 384-393.
[22] İsmail, O., Gökçe Kocabay, Ö. (2021). Absorption and adsorption studies of polyacrylamide/sodium alginate hydrogels. Colloid and Polymer Science, (299) 783-796.
[23] Tanwar, A., Date, P., Ottoor, D. (2021). ZnO NPs incorporated gelatin grafted polyacrylamide hydrogel nanocomposite for controlled release of ciprofloxacin. Colloid and Interface Science Communications, (42) 100413.
[24] Obireddy, S.R., Chintha, M., Kashayi, C.R., Venkata, K.R.K.S., Subbarao, S.M.C. (2020). Gelatin‐coated dual cross‐linked sodium alginate/magnetite nanoparticle microbeads for controlled release of doxorubicin. ChemistrySelect, (5) 10276-10284.
[25] Manjula, B., Varaprasad, K., Sadiku, R., Raju, K.M. (2013). Preparation and characterization of sodium alginate–based hydrogels and their in vitro release studies. Advances in polymer technology, (32).
[26] Xue, Y., Xia, X., Yu, B., Luo, X., Cai, N., Long, S., Yu, F. (2015). A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellular delivery of doxorubicin. RSC advances, (5) 73416-73423.