سنتز و کاربرد نانوذرات گرافن اکسید و گرافن اکسید سولفونه جهت استفاده در غشاهای نانوفیلتراسیون پلی اتر سولفون

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه شیمی پلیمر، دانشکده شیمی، دانشگاه تهران، تهران، ایران

چکیده

در این مطالعه، ابتدا گرافن اکسید(GO) از طریق روش هامر بهبود یافته سنتز و نانوذرات گرافن اکسید سولفونه (s-GO) از طریق واکنش سولفوناسیون مؤثر و کارا تهیه شد. به منظور بررسی کارایی غشاهای نانوفیلتراسیون، این غشاها بر اساس اختلاط پلی اتر سولفون با گرافن اکسید(GO) و نانوذرات گرافن اکسید سولفونه (s-GO) تهیه و مورد بررسی قرار گرفتند. با استفاده از طیف‌سنجی FT-IR و رامان سنتز نانوذرات سنتزی گرافن اکسید(GO) و گرافن اکسید سولفونه(s-GO) مورد ارزیابی ساختاری قرار گرفت. با استفاده از روش وارونگی فاز غشا نانوکامپوزیتی حاوی نانوذرات ساخته شد. مورفولوژی سطح، مقطع عرضی و ساختار غشاها به کمک FE-SEM رصد شد. میزان ترشوندگی سطح غشا به کمک آزمون زاویه تماس، تخلخل غشا، میزان جذب آب و میانگین شعاع منفذ غشا تعیین گردید. عملکرد غشا نانوفیلتراسیون با اندازه گیری شار آب خالص، توانایی حذف رنگ، نمک زدایی از محلول آبی، حذف فلزات سنگین، میزان گرفتگی و نسبت بازیابی شار بررسی شد. به نظر می‌رسد عملاً گروه‌های بسیار آب‌دوست OSO3H مستقر بر روی سطوح GO بتوانند در غشا نهایی موجب افزایش آبدوستی غشا و بهبود خواص ضدگرفتگی آن شوند. آزمون گرفتگی در مورد غشاهای حاوی گرافن اکسید سولفونه نتایج بهتری را نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and application of graphene oxide and sulfonated graphene oxide nanoparticles for using in nanofiltration membranes polyether sulfone

نویسندگان [English]

  • Nader Gholami
  • Hossein Mahdavi
College of Science, University of Tehran, Tehran, Iran
چکیده [English]

In this study, graphene oxide (GO) was synthesized through the improved Hummer method and sulfonated graphene oxide nanoparticles (s-GO) were prepared by effective sulfonation reaction. To evaluate the effectiveness of nanofiltration membranes, the membranes were prepared based on the mixing of polyether sulfone with graphene oxide (GO) and sulfonated graphene oxide nanoparticles. Synthesis of GO and s-GO nanoparticles was structurally evaluated using FT-IR and Raman spectroscopy. Nanocomposite membrane containing nanoparticles were fabricated via phase inversion method and their performance was evaluated using membrane evaluation tests. Surface, cross-section morphology and membrane structure were observed by FE-SEM. The wettability of the membrane surface was determined by the test of contact angle, membrane porosity, water absorption and average membrane pore radius. Nanofiltration membrane performance was evaluated by measuring pure water flux, dye removal ability, desalination from aqueous solution, removal of heavy metals, fouling rate and flux recovery ratio. It seems, practically very hydrophilic -OSO3H groups located on GO surfaces can increase the hydrophilicity of the membrane and improve its anti-fouling properties in the final membrane. Fouling test for graphene sulfone-containing membranes showed better results.

کلیدواژه‌ها [English]

  • Graphene oxide (GO)
  • Sulfonated graphene oxide (s-GO)
  • Nanoparticles
  • Nanofiltration

This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Jhaveri, J. H., & Murthy, Z. V. P. (2016). A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 379, 137-154.
[2] Ren, S., Rong, P., & Yu, Q. (2018). Preparations, properties and applications of graphene in functional devices: A concise review. Ceramics International, 44(11), 11940-11955.
[3] Eigler, S., & Hirsch, A. (2014). Chemistry with graphene and graphene oxide-challenges for synthetic chemists. Angewandte Chemie International Edition, 53(30), 7720-7738.
[4] Wang, X., Zhi, L., & Tsao, N. (2008). Ž. Tomovi ć, J. Li, K. Müllen. Angew. Chem., Int. Ed, 47(16), 2990.
[5] Ebrahimi Askari, M. & Elhami, Sh. (1400). Synthesis and characterization of modified graphene oxide and its use for the removal of mercury (II) from aqueous samples. J. Appl. Chem. 16 (58), 245-256, in Persian.
[6] Zarnegaryan, A. & Elhamifar, D. (1400). Co (II) complex immobilized on functionalized graphene oxide: An efficient catalyst for epoxidation of alkenes. J. Appl. Chem. 16 (59), 85-98, in Persian.
[7] Zeng, Y., Li, T., Yao, Y., Li, T., Hu, L., & Marconnet, A. (2019). Thermally conductive reduced graphene oxide thin films for extreme temperature sensors. Advanced Functional Materials, 29(27), 1901388.
[8] Tripathi, M., Valentini, L., Rong, Y., Bittolo Bon, S., Pantano, M. F., Speranza, G., ... & Pugno, N. M. (2020). Free-standing graphene oxide and carbon nanotube hybrid papers with enhanced electrical and mechanical performance and their synergy in polymer laminates. International Journal of Molecular Sciences, 21(22), 8585.
[9] Ibrahim, Y., Banat, F., Yousef, A. F., Bahamon, D., Vega, L. F., & Hasan, S. W. (2020). Surface modification of anti‐fouling novel cellulose/graphene oxide (GO) nanosheets (NS) microfiltration membranes for seawater desalination applications. Journal of Chemical Technology & Biotechnology, 95(7), 1915-1925.
[10] Zhao, C., Xu, X., Chen, J., & Yang, F. (2014). Optimization of preparation conditions of poly (vinylidene fluoride)/graphene oxide microfiltration membranes by the Taguchi experimental design. Desalination, 334(1), 17-22.
[11] Fathizadeh, M., Xu, W. L., Zhou, F., Yoon, Y., & Yu, M. (2017). Graphene oxide: a novel 2‐dimensional material in membrane separation for water purification. Advanced Materials Interfaces, 4(5), 1600918.
[12] Sun, Z., & Hu, Y. H. (2020). Ultrafast, low‐cost, and mass production of high‐quality graphene. Angewandte Chemie International Edition, 59(24), 9232-9234.
[13] Wang, X., Feng, M., Liu, Y., Deng, H., & Lu, J. (2019). Fabrication of graphene oxide blended polyethersulfone membranes via phase inversion assisted by electric field for improved separation and antifouling performance. Journal of membrane science, 577, 41-50.
[14] Chae, J., Lim, T., Cheng, H., & Jung, W. (2021). Modification of the surface morphology and properties of graphene oxide and multi-walled carbon nanotube-based polyvinylidene fluoride membranes according to changes in non-solvent temperature. Nanomaterials, 11(9), 2269.
[15] Rezaee, R., Nasseri, S., Mahvi, A. H., Jafari, A., Safari, M., Shahmoradi, B., ... & Maroosi, M. (2016). Fabrication of ultrathin graphene oxide-coated membrane with hydrophilic properties for arsenate removal from water. Journal of Advances in Environmental Health Research, 4(3), 169-175.
[16] Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., & Li, Y. (2012). Novel GO-blended PVDF ultrafiltration membranes. Desalination, 299, 50-54.
[17] Kang, Y., Obaid, M., Jang, J., & Kim, I. S. (2019). Sulfonated graphene oxide incorporated thin film nanocomposite nanofiltration membrane to enhance permeation and antifouling properties. Desalination, 470, 114125.
[18] Yin, J., Zhu, G., & Deng, B. (2016). Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 379, 93-101.
[19] Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., & Mahurin, S. M. (2015). Water desalination using nanoporous single-layer graphene. Nature nanotechnology, 10(5), 459-464.
[20] Noel Jacob, K., Senthil Kumar, S., Thanigaivelan, A., Tarun, M., & Mohan, D. (2014). Sulfonated polyethersulfone-based membranes for metal ion removal via a hybrid process. Journal of Materials Science, 49, 114-122.
[21] Unveren, E. E., Erdogan, T., Celebi, S. S., & Inan, T. Y. (2010). Role of post-sulfonation of poly (ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell. International journal of hydrogen energy, 35(8), 3736-3744.
[22] Pedicini, R., Carbone, A., Sacca, A., Gatto, I., Di Marco, G., & Passalacqua, E. (2008). Sulphonated polysulphone membranes for medium temperature in polymer electrolyte fuel cells (PEFC). Polymer Testing, 27(2), 248-259.
[23] Simari, C., Lufrano, E., Godbert, N., Gournis, D., Coppola, L., & Nicotera, I. (2020). Titanium dioxide grafted on graphene oxide: Hybrid nanofiller for effective and low-cost proton exchange membranes. Nanomaterials, 10(8), 1572.
[24] Song, N., Gao, X., Ma, Z., Wang, X., Wei, Y., & Gao, C. (2018). A review of graphene-based separation membrane: Materials, characteristics, preparation and applications. Desalination, 437, 59-72.
[25] Lau, W. J., Ismail, A. F., Goh, P. S., Hilal, N., & Ooi, B. S. (2015). Characterization methods of thin film composite nanofiltration membranes. Separation & Purification Reviews, 44(2), 135-156.
[26] Yoo, B. M., Shin, J. E., Lee, H. D., & Park, H. B. (2017). Graphene and graphene oxide membranes for gas separation applications. Current opinion in chemical engineering, 16, 39-47.
[27] Chen, P., Cui, L., & Zhang, K. (2015). Surface-enhanced Raman spectroscopy monitoring the development of dual-species biofouling on membrane surfaces. Journal of membrane science, 473, 36-44.
[28] Kang, Y., Obaid, M., Jang, J., Ham, M. H., & Kim, I. S. (2018). Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process. Chemosphere, 207, 581-589.
[29] Kim, T. H., Jee, K. Y., & Lee, Y. T. (2015). The improvement of water flux and mechanical strength of PVDF hollow fiber membranes by stretching and annealing conditions. Macromolecular Research, 23, 592-600.
[30] Ren, X., Shen, C., Gao, S., Yuan, Y., & Chen, J. (2018). Proton Exchange Membrane with Enlarged Operating Temperature by Incorporating Phosphonic Acid Functionalized and Crosslinked Siloxane in Sulfonated Poly (ether ether ketone) (SPEEK) Matrix. Macromolecular Research, 26, 173-181.
[31] Guo, J., & Kim, J. (2017). Modifications of polyethersulfone membrane by doping sulfated-TiO 2 nanoparticles for improving anti-fouling property in wastewater treatment. RSC advances, 7(54), 33822-33828.
[32] Yin, J., Zhu, G., & Deng, B. (2016). Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 379, 93-101.
[33] Thomsen, C., & Reich, S. (2000). Double resonant Raman scattering in graphite. Physical review letters, 85(24), 5214.
[34] Ren, L., Huang, S., Zhang, C., Wang, R., Tjiu, W. W., & Liu, T. (2012). Functionalization of graphene and grafting of temperature-responsive surfaces from graphene by ATRP “on water”. Journal of Nanoparticle Research, 14, 1-9.
[35] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., ... & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. carbon, 45(7), 1558-1565.
[36] Mahdavi, H., & Shahalizade, T. (2015). Preparation, characterization and performance study of cellulose acetate membranes modified by aliphatic hyperbranched polyester. Journal of membrane science, 473, 256-266.
[37] Hongru, A., Xiangqin, L., Shuyan, S., Ying, Z., & Tianqing, L. (2017). Measurement of Wenzel roughness factor by laser scanning confocal microscopy. RSC advances, 7(12), 7052-7059.
[38] Deng, B., Yu, M., Yang, X., Zhang, B., Li, L., Xie, L., ... & Lu, X. (2010). Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly (vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization. Journal of Membrane Science, 350(1-2), 252-258.
[39] Mahalingam, D. K., Kim, D., & Nunes, S. P. (2017). Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid. MRS Advances, 2(46), 2505-2511.
[40] Igbinigun, E., Fennell, Y., Malaisamy, R., Jones, K. L., & Morris, V. (2016). Graphene oxide functionalized polyethersulfone membrane to reduce organic fouling. Journal of Membrane Science, 514, 518-526.
[41] Ganesh, B. M., Isloor, A. M., & Ismail, A. F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination313, 199-207.