[1] Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4), 335-340.
[2] Alamu, O. J., Akintola, T. A., Enweremadu, C. C., & Adeleke, A. E. (2008). Characterization of palm-kernel oil biodiesel produced through NaOH-catalysed transesterification process. Scientific Research and Essay, 3(7), 308-311.
[3] Encinar, J. M., González, J. F., Martínez, G., Sánchez, N., & Pardal, A. (2012). Soybean oil transesterification by the use of a microwave flow system. Fuel, 95, 386-393.
[4] Suppes, G. J., Dasari, M. A., Doskocil, E. J., Mankidy, P. J., & Goff, M. J. (2004). Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General, 257(2), 213-223.
[5] Farzaneh, F., Moghzi, F., & Rashtizadeh, E. (2016). Zn (II) coordination polymer as a bifunctional catalyst for biodiesel production from soybean oil. Reaction Kinetics, Mechanisms and Catalysis, 118, 509-521.
[6] Belyani, S., Behzad, M., & Tamaddon, F. (2013). Synthesis of biodiesel using KOH/Borax as suitable mixed catalyst via transesterification of waste sesame oil. Applied Chemistry, 8(29), 15-18.
[7] Xie, W., Peng, H., & Chen, L. (2006). Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical, 246(1-2), 24-32.
[8] Kazemi, E., & Aghaei, H. (2022). Immobilization of lipase on Na-montmorillonite and modified montmorillonite: Investigation of biocatalytic activity of immobilized lipases in biodiesel production from waste cooking oil. Applied Chemistry, 17(63), 9-22.
[9] Kulkarni, M. G., & Dalai, A. K. (2006). Waste cooking oil an economical source for biodiesel: a review. Industrial & engineering chemistry research, 45(9), 2901-2913.
[10] Norjannah, B., Ong, H. C., Masjuki, H. H., Juan, J. C., & Chong, W. T. (2016). Enzymatic transesterification for biodiesel production: a comprehensive review. RSC advances, 6(65), 60034-60055.
[11] Yoo, S. J., Lee, H. S., Veriansyah, B., Kim, J., Kim, J. D., & Lee, Y. W. (2010). Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts. Bioresource technology, 101(22), 8686-8689.
[12] Dorado, M. P., Ballesteros, E., Mittelbach, M., & López, F. J. (2004). Kinetic parameters affecting the alkali-catalyzed transesterification process of used olive oil. Energy & Fuels, 18(5), 1457-1462. [13] Baskar, G., & Soumiya, S. (2016). Production of biodiesel from castor oil using iron (II) doped zinc oxide nanocatalyst. Renewable Energy, 98, 101-107.
[14] Glaspell, G., Dutta, P., & Manivannan, A. (2005). A room-temperature and microwave synthesis of M-doped ZnO (M= Co, Cr, Fe, Mn & Ni). Journal of cluster science, 16, 523-536.
[15] Baskar, G., Gurugulladevi, A., Nishanthini, T., Aiswarya, R., & Tamilarasan, K. J. R. E. (2017). Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst. Renewable energy, 103, 641-646.
[16] Jacob, J., Chia, L. H. L., & Boey, F. Y. C. (1995). Thermal and non-thermal interaction of microwave radiation with materials. Journal of materials science, 30, 5321-5327.
[17] Kappe, C. O. (2008). Microwave dielectric heating in synthetic organic chemistry. Chemical Society Reviews, 37(6), 1127-1139.
[18] Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide—from synthesis to application: a review. Materials, 7(4), 2833-2881.
[19] Yan, S., Salley, S. O., & Ng, K. S. (2009). Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Applied Catalysis A: General, 353(2), 203-212.
[20] Zhang, H., Li, H., Hu, Y., Rao, K. T. V., Xu, C. C., & Yang, S. (2019). Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts. Renewable and Sustainable Energy Reviews, 114, 109296.
[21] Baskar, G., Selvakumari, I. A. E., & Aiswarya, R. J. B. T. (2018). Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst. Bioresource technology, 250, 793-798.
[22] Ghaffari Nazifi, A., & Behzad, M. (2019). Kanemite from rice husk ash as an efficient, cheap and recoverable base catalyst for production of biodiesel. Applied Chemistry, 14(50), 155-166.
[23] Yang, Z., & Xie, W. (2007). Soybean oil transesterification over zinc oxide modified with alkali earth metals. Fuel processing technology, 88(6), 631-638.
[24] Weisz, P. B., Haag, W. O., & Rodewald, P. G. (1979). Catalytic production of high-grade fuel (gasoline) from biomass compounds by shape-selective catalysis. Science, 206(4414), 57-58.
[25] Azcan, N., & Danisman, A. (2007). Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel, 86(17-18), 2639-2644.
[26] Ramos, M. J., Casas, A., Rodríguez, L., Romero, R., & Perez, A. (2008). Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies. Applied Catalysis A: General, 346(1-2), 79-85.
[27] Encinar, J. M., González, J. F., Martínez, G., Sánchez, N., & Pardal, A. (2012). Soybean oil transesterification by the use of a microwave flow system. Fuel, 95, 386-393.
[28] Albuquerque, M. C., Jiménez-Urbistondo, I., Santamaría-González, J., Mérida-Robles, J. M., Moreno-Tost, R., Rodríguez-Castellón, E., & Maireles-Torres, P. (2008). CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied Catalysis A: General, 334(1-2), 35-43.