[1] Dai, L., Chang, D. W., Baek, J. B., & Lu, W. (2012). Carbon nanomaterials for advanced energy conversion and storage. small, 8(8), 1130-1166.
[2] Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 114(19), 9919-9986.
[3] Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 392, 658-686.
[4] Akhtar, B., Ghafuri, H., & Rashidizadeh, A. (2021). Synergistic effect of iodine doped TiO2 nanoparticle/g-C3N4 nanosheets with upgraded visible-light-sensitive performance toward highly efficient and selective photocatalytic oxidation of aromatic alcohols under blue LED irradiation. Molecular Catalysis, 506, 111527.
[5] Ghafuri, H., Dehghani, M., Rashidizadeh, A., & Rabbani, M. (2019). Synthesis and characterization of magnetic nanocomposite Fe3O4@ TiO2/Ag, Cu and investigation of photocatalytic activity by degradation of rhodamine B (RhB) under visible light irradiation. Optik, 179, 646-653.
[6] Ghafuri, H., Movahedinia, Z., Rahimi, R., & Zand, H. R. E. (2015). Synthesis of 5, 10, 15, 20-tetrakis [4-(naphthalen-2-yloxycarbonyl) phenyl] porphyrin (TNBP) and its complexes with zinc and cobalt and an investigation of the photocatalytic activity of nanoFe 3 O 4@ ZrO 2–TNBP. RSC advances, 5(74), 60172-60178.
[7] Ghafuri, H., & Rashidizadeh, A. (2020). Facile preparation of CuS-g-C3N4/Ag nanocomposite with improved photocatalytic activity for the degradation of rhodamine B. Polyhedron, 179, 114368.
[8] Afroozan Bazghale, A., & Mohammad-khah, A. (2021). Improvement of methylene blue removal by La: ZnO/GO nanocomposites in the presence of ultrasound. Applied Chemistry, 16(58), 77-94.
[9] Sessler, J. L., & Seidel, D. (2003). Synthetic expanded porphyrin chemistry. Angewandte Chemie International Edition, 42(42), 5134-5175.
[10] Harvey, J. D., & Ziegler, C. J. (2003). Developments in the metal chemistry of N-confused porphyrin. Coordination chemistry reviews, 247(1-2), 1-19.
[11] Feng, L., Wang, K. Y., Joseph, E., & Zhou, H. C. (2020). Catalytic porphyrin framework compounds. Trends in Chemistry, 2(6), 555-568.
[12] Yaghoubi-berijani, M., & Bahramian, B. (2021). Synthesis, design and use of new BiOBr/Ag@ TCPP and BiOBr/Ag@ SnTCPP nanocomposites for degradation of dye pollutant. Applied Chemistry, 16(58), 287-306.
[13] Kou, S. G., Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules, 169, 85-94.
[14] Saheed, I. O., Da Oh, W., & Suah, F. B. M. (2021). Chitosan modifications for adsorption of pollutants–A review. Journal of hazardous materials, 408, 124889.
[15] Bakshi, P. S., Selvakumar, D., Kadirvelu, K., & Kumar, N. S. (2020). Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. International journal of biological macromolecules, 150, 1072-1083.
[16] Mohseni, F., Akbarzadeh Torbati, N., & Kondori, T. (2021). Kinetics and isotherm investigation of adsorption process of nickel oxide nanoparticles in edible dye removal from industrial effluent. Applied Chemistry, 16(58), 333-348.
[17] Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the total environment, 717, 137222.
[18] Chiu, Y. H., Chang, T. F. M., Chen, C. Y., Sone, M., & Hsu, Y. J. (2019). Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts, 9(5), 430.
[19] Mashkoor, F., & Nasar, A. (2020). Magsorbents: Potential candidates in wastewater treatment technology–A review on the removal of methylene blue dye. Journal of magnetism and magnetic materials, 500, 166408.
[20] Santoso, E., Ediati, R., Kusumawati, Y., Bahruji, H., Sulistiono, D. O., & Prasetyoko, D. (2020). Review on recent advances of carbon based adsorbent for methylene blue removal from waste water. Materials Today Chemistry, 16, 100233.
[21] Setarehshenas, N., Hosseini, S. H., Nasr Esfahany, M., Mansouri, M., & Ahmadi, G. (2018). Photocatalytic Degradation of Basic Red 46 Azo Dye using Activated Carbon-doped ZrO2/UV Process. Applied Chemistry, 13(48), 53-66.
[22] Nakazono, T., Parent, A. R., & Sakai, K. (2013). Cobalt porphyrins as homogeneous catalysts for water oxidation. Chemical Communications, 49(56), 6325-6327.
[23] Rahimi, R., Mehrehjedy, A., & Zargari, S. (2014, October). Synthesis and photocatalytic activity investigation of CuO nanorod functionalized with porphyrin. In Proceedings of The 18th International Electronic Conference on Synthetic Organic Chemistry.
[24] Alvarez, I. B., Wu, Y., Sanchez, J., Ge, Y., Ramos-Garcés, M. V., Chu, T., ... & Villagrán, D. (2021). Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation. Sustainable Energy & Fuels, 5(2), 430-437.
[25] Lions, M., Tommasino, J. B., Chattot, R., Abeykoon, B., Guillou, N., Devic, T., ... & Fateeva, A. (2017). Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework. Chemical Communications, 53(48), 6496-6499.
[26] Wang, C. C., Lee, C. K., Lyu, M. D., & Juang, L. C. (2008). Photocatalytic degradation of CI Basic Violet 10 using TiO2 catalysts supported by Y zeolite: an investigation of the effects of operational parameters. Dyes and Pigments, 76(3), 817-824.