[1] Caygill, J. S., Davis, F., & Higson, S. P. (2012). Current trends in explosive detection techniques. Talanta, 88, 14-29.
[2] Gulia, S., Gulati, K. K., Gambhir, V., & Sharma, R. (2019). Detection of explosive materials and their precursors through translucent commercial bottles using spatially offset Raman spectroscopy using excitation wavelength in visible range. Optical Engineering, 58(12), 127102-127102.
[3] Guicheteau, J., & Hopkins, R. (2016). Applications of spatially offset Raman spectroscopy to defense and security. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVII, 9824, 76-85.
[4] Moros, J., Lorenzo, J. A., Novotný, K., & Laserna, J. J. (2013). Fundamentals of stand‐off Raman scattering spectroscopy for explosive fingerprinting. Journal of Raman Spectroscopy, 44(1), 121-130.
[5] Elbasuney, S., & El-Sherif, A. F. (2016). Complete spectroscopic picture of concealed explosives: Laser induced Raman versus infrared. TrAC Trends in Analytical Chemistry, 85, 34-41.
[6] Schrader, B. (Ed.). (2008). Infrared and Raman spectroscopy: methods and applications. John Wiley & Sons.
[7] Matousek, P., Clark, I. P., Draper, E. R., Morris, M. D., Goodship, A. E., Everall, N., ... & Parker, A. W. (2005). Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Applied spectroscopy, 59(4), 393-400.
[8] Eliasson, C., Claybourn, M., & Matousek, P. (2007). Deep subsurface Raman spectroscopy of turbid media by a defocused collection system. Applied spectroscopy, 61(10), 1123-1127.
[9] Eliasson, C., Macleod, N. A., & Matousek, P. (2007). Noninvasive detection of concealed liquid explosives using Raman spectroscopy. Analytical chemistry, 79(21), 8185-8189.
[10] Cletus, B., Olds, W., Izake, E. L., Sundarajoo, S., Fredericks, P. M., & Jaatinen, E. (2012). Combined time-and space-resolved Raman spectrometer for the non-invasive depth profiling of chemical hazards. Analytical and bioanalytical chemistry, 403, 255-263.
[11] Olds, W. J., Jaatinen, E., Fredericks, P., Cletus, B., Panayiotou, H., & Izake, E. L. (2011). Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs. Forensic science international, 212(1-3), 69-77.
[12] Eliasson, C., Macleod, N. A., & Matousek, P. (2007). Noninvasive detection of concealed liquid explosives using Raman spectroscopy. Analytical chemistry, 79(21), 8185-8189.
[13] Stone, N., Baker, R., Rogers, K., Parker, A. W., & Matousek, P. (2007). Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst, 132(9), 899-905.
[14] Ghita, A., Hubbard, T., Matousek, P., & Stone, N. (2020). Noninvasive detection of differential water content inside biological samples using deep Raman spectroscopy. Analytical Chemistry, 92(14), 9449-9453.
[15] Guicheteau, J., & Hopkins, R. (2016). Applications of spatially offset Raman spectroscopy to defense and security. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVII, 9824, 76-85.
[16] Maher, J. R., & Berger, A. J. (2010). Determination of ideal offset for spatially offset Raman spectroscopy. Applied spectroscopy, 64(1), 61-65.
[17] Matousek, P., Morris, M. D., Everall, N., Clark, I. P., Towrie, M., Draper, E., ... & Parker, A. W. (2005). Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Applied spectroscopy, 59(12), 1485-1492.
[18] Sundarajoo, S., Izake, E. L., Olds, W., Cletus, B., Jaatinen, E., & Fredericks, P. M. (2013). Non‐invasive depth profiling by space and time‐resolved Raman spectroscopy. Journal of Raman Spectroscopy, 44(7), 949-956.
[19] Martyshkin, D. V., Ahuja, R. C., Kudriavtsev, A., & Mirov, S. B. (2004). Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera. Review of scientific instruments, 75(3), 630-635.
[20] Zapata, F., & García-Ruiz, C. (2017). Analysis of different materials subjected to open-air explosions in search of explosive traces by Raman microscopy. Forensic science international, 275, 57-64.
[21] Ali, E. M., Edwards, H. G., & Scowen, I. J. (2009). In-situ detection of single particles of explosive on clothing with confocal Raman microscopy. Talanta, 78(3), 1201-1203.
[22] Dunuwille, M., & Yoo, C. S. (2013). Phase diagram of ammonium nitrate. The Journal of Chemical Physics, 139(21), 214503.
[23] Mauricio, F. G. M., Pralon, A. Z., Talhavini, M., Rodrigues, M. O., & Weber, I. T. (2017). Identification of ANFO: Use of luminescent taggants in post-blast residues. Forensic science international, 275, 8-13.
[24] Zapata, F., de la Ossa, M. Á. F., Gilchrist, E., Barron, L., & García-Ruiz, C. (2016). Progressing the analysis of improvised explosive devices: Comparative study for trace detection of explosive residues in handprints by Raman spectroscopy and liquid chromatography. Talanta, 161, 219-227.
[25] Ali, E. M., Edwards, H. G., & Scowen, I. J. (2009). Raman spectroscopy and security applications: the detection of explosives and precursors on clothing. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40(12), 2009-2014.
[26] Diaz, D., & Hahn, D. W. (2020). Raman spectroscopy for detection of ammonium nitrate as an explosive precursor used in improvised explosive devices. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 233, 118204.
[27] Kuzmin, V., Kozak, G., & Mikheev, D. (2010). Detonability of ammonium nitrate and mixtures on its base. Central European Journal of Energetic Materials, 7(4), 335-343.
[28] Fabin, M., & Jarosz, T. (2021). Improving ANFO: Effect of Additives and Ammonium Nitrate Morphology on Detonation Parameters. Materials, 14(19), 5745.
[29] Dunuwille, M., & Yoo, C. S. (2013). Phase diagram of ammonium nitrate. The Journal of Chemical Physics, 139(21), 214503.
[30] N. Kubota, Propellants and explosives: thermochemical aspects of combustion. John Wiley & Sons. (2015) pp. 274.
[31] Gillen, G., Najarro, M., Wight, S., Walker, M., Verkouteren, J., Windsor, E., ... & Urbas, A. (2015). Particle fabrication using inkjet printing onto hydrophobic surfaces for optimization and calibration of trace contraband detection sensors. Sensors, 15(11), 29618-29634.
[32] Tang, H. C., & Torrie, B. H. (1977). Raman study of NH4NO3 and ND4NO3—250–420K. Journal of Physics and Chemistry of Solids, 38(2), 125-138.
[33] Andreassen, E. (1999). Infrared and Raman spectroscopy of polypropylene (Vol. 2). Springer: Dordrecht, Netherlands.
[34] Zachhuber, B., Gasser, C., Chrysostom, E. T., & Lendl, B. (2011). Stand-off spatial offset Raman spectroscopy for the detection of concealed content in distant objects. Analytical chemistry, 83(24), 9438-9442.
[35] Vardaki, M. Z., Seretis, K., Gaitanis, G., Bassukas, I. D., & Kourkoumelis, N. (2021). Assessment of skin deep layer biochemical profile using spatially offset raman spectroscopy. Applied Sciences, 11(20), 9498.
[36] Izake, E. L., Cletus, B., Olds, W., Sundarajoo, S., Fredericks, P. M., & Jaatinen, E. (2012). Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents. Talanta, 94, 342-347.
[37] Olds, W. J., Jaatinen, E., Fredericks, P., Cletus, B., Panayiotou, H., & Izake, E. L. (2011). Spatially offset Raman spectroscopy (SORS) for the analysis and detection of packaged pharmaceuticals and concealed drugs. Forensic science international, 212(1-3), 69-77.
[38] Zachhuber, B., Ramer, G., Hobro, A., Chrysostom, E. T. H., & Lendl, B. (2011). Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives. Analytical and bioanalytical chemistry, 400, 2439-2447.
[39] Izake, E. L., Sundarajoo, S., Olds, W., Cletus, B., Jaatinen, E., & Fredericks, P. M. (2013). Standoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packaging. Talanta, 103, 20-27.
[40] Silva, D. J. D., & Wiebeck, H. (2019). Predicting LDPE/HDPE blend composition by CARS-PLS regression and confocal Raman spectroscopy. Polímeros, 29.
[41] Gulia, S., Gulati, K. K., Gambhir, V., & Sharma, R. (2019). Detection of explosive materials and their precursors through translucent commercial bottles using spatially offset Raman spectroscopy using excitation wavelength in visible range. Optical Engineering, 58(12), 127102-127102.