[1] Dehua, X., Irene, M. C. (2016). Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Research.100, 1.
[2] Dunnick, J. K., Hailey, J. R. (1996). Phenolphthalein exposure causes multiple carcinogenic effects in experimental model systems Cancer Res. 56, 4922-4926.
[3] Sayadi Anari, A. R., Asadpour, M., Shabani, Z., Sayadi Anari, M. H. (2013). Pharmaceutical Pollution of the eco-system and Its Detrimental Effects on Public Health. Journal of Rafsanjan University of Medical Sciences. 11, 11-18.
[4] Fekri, M. H., Isanejad Mohamareh, S., Hosseini, M., Razavi Mehr, M. (2022). Green synthesis of activated carbon/Fe3O4 nanocomposite from flaxseed, its application as adsorbent and antibacterial. Chem. Pap. 76, 6767.
[5] Dashti Khavidaki, H., Fekri, M. H. (2015). Removing Thallium (I) Ion from Aqueous Solutions Using Modified ZnO Nanopowder. J. Adv. Chem. 11, 3777.
[6] Dashti Khavidaki, H., Sarlal, F., Fekri, M. H. (2023). Adsorption Characteristics of Amoxicillin on Activated Carbon from Eucalyptus Leave and Wheat Straw. Journal of Applied Chemistry. DOI: 10.22075/chem.2023.26959.2066.
[7] Oliver, A. H., Voulvoulis, N., John, N. L. (2003). Potential impact of pharmaceuticals on environmental health. Bull. W. H. O. 81, 768-769.
[8] Steinnes, E., Anderson, E. (1991). Atmosperic deposition of mercury in Norway: temporal and spatial trends. Water, Air, Soil Pollut. 56, 391-404.
[9] Fekr, M. H., Shahverdi, V., Chegeni, M., Razavi Mehr, M., Abbastabar Ahangar, H., Saffar, A. (2022). Simultaneous photocatalytic degradation of cefixime and cefuroxime antibiotics using g-C3N4/NaBiO3 nanocomposite and optimization of effective parameters by response surface methodology. Reac. Kinet. Mech. Catal. 135, 1059.
[10] Jianming, X. (2009). Comparison of metronidazole degradation by different advanced oxidation processes in low concentration aqueous solutions. Chin. J. Environ. Eng. 3, 109-119.
[11] Iram, M., Guan, Y., Ishfaq, A., Liu, H. (2010). Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J. Hazard. Mater. 181, 1039-1050.
[12] Razavi Mehr, M., Fekri, M. H., Omidali, F., Eftekhari, N., Akbari-adergani, B. (2019). Removal of Chromium (VI) from Wastewater by Palm Kernel Shell-based a Green Method. J. Chem. Health Risks. 9, 75.
[13] Fekri, M. H., Banimahd Keivani, M., Razavi Mehr, M., Akbari-adergani, B. (2019). Effective Parameters on Removal of Rhodamine B from Colored Wastewater by Nano polyaniline/Sawdust Composite. J. Mazandaran Univ. Med. Sci. 29, 166.
[14] Chegeni, M., Etemadpour, S., Fekri, M. H. (2021). The perlite-calcium alginate–activated carbon composite as an efficient adsorbent for the removal of dyes from aqueous solution. Phys. Chem. Res. 9, 1.
[15] Zare, M., Adibiyan, M., Ghasemi, E., Ashouri, F. (2022). Adsorption of Congo red dye by magnetic nanoparticles of ferrite cobalt and ferrite zinc coated with polyaniline. Journal of Applied Chemistry. 17(64), 55-70.
[16] Ali, A., Shoeb, M., Li, Y., Li, B., Khan, M. A. (2021). Enhanced photocatalytic degradation of antibiotic drug and dye pollutants by graphene-ordered mesoporous silica (SBA-15)/TiO2 nanocomposite under visible-light irradiation. J. Mol0 Liq. 324, 114696.
[17] Pandey, P., Shankar, A., Biney, M., Saini, V. K. (2021). Enhancement in amoxicillin adsorption and regeneration properties of SBA-15 after surface modification with polyaniline. Colloid and Interface Science Communications. 43, 100432.
[18] Bui, T. X., Kang, S. Y., Lee, S. H., Choi, H. (2011). Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water. J. hazard. Mater. 193, 156-163.
[19] Khanmohammadi, F., Razavi Zadeh, B. M., Azizi, S. N. (2023). Nanoparticles of SBA-15 synthesized from corn silica as an effective delivery system for valproic acid. Journal of Applied Chemistry. 17(65), 65-80.
[20] Manzano, M., Vallet-Regi, M. (2020). Mesoporous silica nanoparticles for drug delivery. Advanced functional materials. Adv. Funct. Mater. 30, 190634.
[21] Fekri, M. H., Soleymani, S., Razavi Mehr, M., Akbari-adergani, B. (2022). Synthesis and characterization of mesoporous ZnO/SBA-16 nanocomposite: Its efficiency as drug delivery system. J. Non-Cryst. Solids. 591, 121512.
[22] Sayadi, K., Rahdar, A., Hajinezhad, M. R., Nikazar, S., Susan, M. A. (2020). Atorvastatin-loaded SBA-16 nanostructures: Synthesis, physical characterization, and biochemical alterations in hyperlipidemic rats. J. Mol. Struct. 1202, 127296.
[23] Vatanpour, V., Rabiee, H., Farahani, M. H. D., Masteri-Farahani, M., Nikakan, M. (2020). Preparation and characterization of novel nanoporous SBA-16-COOH embedded polysulfone ultrafiltration membrane for protein separation. Chemtcal Engineering Research and Design. 156, 240-250.
[24] Palos-Barba, V., Moreno-Martell, A., Hernẚndez-Morales, V., Peza-Ledesma, C. L., Rivera-Muñoz, E. M., Nava, R., Pawelec, B. (2020). SBA-16 Cage-Like Porous Material Modified with APTES as an Adsorbent for Pb2+ Ions Removal from Aqueous Solution. Materials. 13, 927.
[25] Madadi, S., Charbonneau, L., Bergeron, J. Y., Kaliaguine, S. (2020). Aerobic epoxidation of limonene using cobalt substituted mesoporous SBA-16 Part 1: Optimization via Response Surface Methodology (RSM). Appl. Catal. B. 260, 118049.
[26] Albayati, T. M., Salih, I. K., Alazzawi, H. F. (2019). Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system. Heliyon. 5, e02539.
[27] Areawi, B. H., Mengistie, A. A. (2013). Removal of Ni (II) from aqueous solution using leaf, bark and seed of Moringa stenopetala adsorbents. Bull. Chem. Soc. Ethiop. 27, 35.