[1] Andreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis today, 53(1), 51-59.
[2] Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1, 167-176.
[3] Vogelpohl, A., & Kim, S. M. (2004). Advanced oxidation processes (AOPs) in wastewater treatment. Industrial and Engineering Chemistry, 10(1), 33-40.
[4] Paździor, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering, 376, 120597.
[5] Haji, S., Benstaali, B., & Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering, 168(1), 134-139.
[6] Patil, A. D., & Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as a Advanced Oxidation Process. IOSR J. Environ. Sci. Toxicol. Food. Technol, 8, 29-32.
[7] Amr, S. S. A., & Aziz, H. A. (2012). New treatment of stabilized leachate by ozone/Fenton in the advanced oxidation process. Waste management, 32(9), 1693-1698.
[8] O’Dowd, K., & Pillai, S. C. (2020). Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances. Environmental Chemical Engineering, 8(5), 104063.
[9] Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235-1243.
[10] Agustina, T. E., Ang, H. M., & Vareek, V. K. (2005). A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Photochemistry and Photobiology C: Photochemistry Reviews, 6(4), 264-273.
[11] De Moraes, S. G., Freire, R. S., & Duran, N. (2000). Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere, 40(4), 369-373.
[12] Lu, T., Gao, Y., Yang, Y., Ming, H., Huang, Z., Liu, G., ... & Hou, Y. (2021). Efficient degradation of tetracycline hydrochloride by photocatalytic ozonation over Bi2WO6. Chemosphere, 283, 131256.
[13] Karunakaran, S. T., Pavithran, R., Sajeev, M., & Rema, S. M. M. (2022). Photocatalytic degradation of methylene blue using a manganese based metal organic framework. Results in Chemistry, 4, 100504.
[14] Cheng, Z., Ling, L., Wu, Z., Fang, J., Westerhoff, P., & Shang, C. (2020). Novel visible light-driven photocatalytic chlorine activation process for carbamazepine degradation in drinking water. Environmental Science & Technology, 54(18), 11584-11593.
[15] Zhu, D., & Zhou, Q. (2019). Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environmental Nanotechnology, Monitoring & Management, 12, 100255.
[16] Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. photochemistry and photobiology A: Chemistry, 108(1), 1-35.
[17] Yi, X. H., Ji, H., Wang, C. C., Li, Y., Li, Y. H., Zhao, C., ... & Liu, W. (2021). Photocatalysis-activated SR-AOP over PDINH/MIL-88A (Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations. Applied Catalysis B: Environmental, 293, 120229.
[18] Eskandarian, M. R., Choi, H., Fazli, M., & Rasoulifard, M. H. (2016). Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chemical Engineering Journal, 300, 414-422.
[19] Zheng, S., Cai, Y., & O'Shea, K. E. (2010). TiO2 photocatalytic degradation of phenylarsonic acid. Photochemistry and Photobiology A: Chemistry, 210(1), 61-68.
[20] Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., ... & Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Cleaner Production, 268, 121725.
[21] Taghavi Fardood, S., Moradnia, F., & Ramazani, A. (2019). Green synthesis and characterisation of ZnMn2O4 nanoparticles for photocatalytic degradation of Congo red dye and kinetic study. Micro Nano Letters, 14(9), 986-991.
[22] Kirankumar, V. S., & Sumathi, S. (2020). A review on photodegradation of organic pollutants using spinel oxide. Materials Today Chemistry, 18, 100355.
[23] Peng, Y., Tang, H., Yao, B., Gao, X., Yang, X., & Zhou, Y. (2021). Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chemical Engineering Journal, 414, 128800.
[24] Kim, G. B., On, N., Kim, T., Choi, C. H., Hur, J. S., Lim, J. H., & Jeong, J. K. (2023). High Mobility IZTO Thin‐Film Transistors Based on Spinel Phase Formation at Low Temperature through a Catalytic Chemical Reaction. Small Methods, 2201522.
[25] Gul, S., Yousuf, M. A., Anwar, A., Warsi, M. F., Agboola, P. O., Shakir, I., & Shahid, M. (2020). Al-substituted zinc spinel ferrite nanoparticles: preparation and evaluation of structural, electrical, magnetic and photocatalytic properties. Ceramics International, 46(9), 14195-14205.
[26] Rashid, J., Barakat, M. A., Mohamed, R. M., & Ibrahim, I. A. (2014). Enhancement of photocatalytic activity of zinc/cobalt spinel oxides by doping with ZrO2 for visible light photocatalytic degradation of 2-chlorophenol in wastewater. Photochemistry and Photobiology A: Chemistry, 284, 1-7.
[27] Hezam, F. A., Rajeh, A., Nur, O., & Mustafa, M. A. (2020). Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Physica B: Condensed Matter, 596, 412389.
[28] Djellabi, R., Ali, J., Yang, B., Haider, M. R., Su, P., Bianchi, C. L., & Zhao, X. (2020). Synthesis of magnetic recoverable electron-rich TCTA@ PVP based conjugated polymer for photocatalytic water remediation and disinfection. Separation and Purification Technology, 250, 116954.
[29] Xu, B., Ding, T., Zhang, Y., Wen, Y., Yang, Z., & Zhang, M. (2017). A new efficient visible-light-driven composite photocatalyst comprising ZnFe2O4 nanoparticles and conjugated polymer from the dehydrochlorination of polyvinyl chloride. Materials Letters, 187, 123-125.
[30] Zhu, H., Fang, M., Huang, Z., Liu, Y. G., Chen, K., Tang, C., ... & Wu, X. (2016). Novel carbon-incorporated porous ZnFe2O4 nanospheres for enhanced photocatalytic hydrogen generation under visible light irradiation. RSC advances, 6(61), 56069-56076.
[31] Yang, L., Xiang, Y., Jia, F., Xia, L., Gao, C., Wu, X., & Song, S. (2021). Photo-thermal synergy for boosting photo-Fenton activity with rGO-ZnFe2O4: Novel photo-activation process and mechanism toward environment remediation. Applied Catalysis B: Environmental, 292, 120198.
[32] Wang, Y., Xiao, X., Lu, M., & Xiao, Y. (2022). 3D network-like rGO-MoSe2 modified g-C3N4 nanosheets with Z-scheme heterojunction: Morphology control, heterojunction construct, and boosted photocatalytic performances. Alloys and Compounds, 897, 163197.
[33] Guo, P., Lv, M., Han, G., Wen, C., Wang, Q., Li, H., & Zhao, X. S. (2016). Solvothermal synthesis of hierarchical colloidal nanocrystal assemblies of ZnFe2O4 and their application in water treatment. Materials, 9(10), 806.
[34] Sripriya, R. C., Ezhil, A., Madhavan, J., & Victor, A. R. (2017). Synthesis and Characterization studies of ZnFe2O4 nanoparticles. Mechanics, Materials Science & Engineering Journal, 9(1).
[35] Dippong, T., Cadar, O., Deac, I. G., Lazar, M., Borodi, G., & Levei, E. A. (2020). Influence of ferrite to silica ratio and thermal treatment on porosity, surface, microstructure and magnetic properties of Zn0. 5Ni0. 5Fe2O4/SiO2 nanocomposite .Alloys and Compounds, 828, 154409.
[36] Zhang, J. Y., Boyd, I. W., O'sullivan, B. J., Hurley, P. K., Kelly, P. V., & Senateur, J. P. (2002). Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. Non-Crystalline Solids, 303(1), 134-138.
[37] Amini, Z., Givianrad, M. H., Aberoomand Azar, P., Husain, S. W., & Saber Tehrani, M. (2020). Photocatalytic and photoelectrocatalytic degradation of congo red dye using Cu and S co-doped TiO2/SiO2 nanoparticles under the purple LED light irradiation: optimization of operational conditions. Applied Chemistry, 15(54), 299-314. (in persion)
[38] Samadi, S., Ghodratnia, S., Montazeri Hadesh, H., & Zakaria, S. (2019). Removal of copper (II) from aqueous solutions by organic polymer-modified TiO2/bentonite nanocomposites. Applied Chemistry, 14(50), 87-104. (in persion)
[39] Hakamizadeh, M., Afshar, S., Tadjarodi, A., Hshemianzadeh, M., Fadaie, M. H., Bozorgi, B. (2013). Hydrogen production by photocatalytic water splitting. Applied Chemistry, 8(28), 9-18. (in persion)
[40] Zhou, Y., & Switzer, J. A. (1996). Growth of cerium (IV) oxide films by the electrochemical generation of base method. alloys and compounds, 237(1-2), 1-5.
[41] Taleshi, F., Zolfaghari, A., & Pahlavan, A. (2015). Synthesis of Cu0.5Mg0.5Fe2O4 nanoparticle by chemical precipitation method and its effect on reduction of charge transfer resistant in electron transfer systems. Applied Chemistry, 10(36), 23-28. (in persion)
[42] Amulya, M. S., Nagaswarupa, H. P., Kumar, M. A., Ravikumar, C. R., & Kusuma, K. B. (2020). Enhanced photocatalytic and electrochemical properties of Cu doped NiMnFe2O4 nanoparticles synthesized via probe sonication method. Applied Surface Science Advances, 2, 100038.
[43] Abharya, A., & Gholizadeh, A. (2021). Synthesis of a Fe3O4-rGO-ZnO-catalyzed photo-Fenton system with enhanced photocatalytic performance. Ceramics International, 47(9), 12010-12019.
[44] Zhang, J. Y., Boyd, I. W., O'sullivan, B. J., Hurley, P. K., Kelly, P. V., & Senateur, J. P. (2002). Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. Non-Crystalline Solids, 303(1), 134-138.
[45] Ramezan Zade Noshabadi, A., & Ehsani, M. H. (2020). Synthesis of La0.6 Sr0.4MnO3 nanoparticles using microwave irradiation and investigation of its photocatalytic activity. Applied Chemistry, 15(56), 313-326. (in persion)
[46] Khaleghi, H., & Ehsani, M. H. (2022). Synthesis and characterization of TM-doped CuO nanosheets (TM= Fe, Mn). Applied Physics A, 128(11), 969.
[47] Esmaeili, S., Ehsani, M. H., & Fazli, M. (2020). Structural, optical and photocatalytic properties of La0. 7Ba0. 3MnO3 nanoparticles prepared by microwave method. Chemical Physics, 529, 110576.
[48] Wu, W., Li, Y., Zhou, K., Wu, X., Liao, S., & Wang, Q. (2012). Nanocrystalline Zn 0.5 Ni 0.5 Fe 2 O 4: preparation and kinetics of thermal process of precursor. thermal analysis and calorimetry, 110(3), 1143-1151.
[49] Yu, L., Wang, L., Sun, X., & Ye, D. (2018). Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. environmental sciences, 73, 138-146.
[50] Darabdhara, G., Das, M. R., Singh, S. P., Rengan, A. K., Szunerits, S., & Boukherroub, R. (2019). Ag and Au nanoparticles/reduced graphene oxide composite materials: synthesis and application in diagnostics and therapeutics. Advances in colloid and interface science, 271, 101991.
[51] Afje, F. R., & Ehsani, M. H. (2018). Size-dependent photocatalytic activity of La0. 8Sr0. 2MnO3 nanoparticles prepared by hydrothermal synthesis. Materials Research Express, 5(4), 045012.
[52] Das, A., Adak, M. K., Mahata, N., & Biswas, B. (2021). Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. Molecular Liquids, 338, 116479.
[53] Ge, M., Hu, Z., Wei, J., He, Q., & He, Z. (2021). Recent advances in persulfate-assisted TiO2-based photocatalysis for wastewater treatment: Performances, mechanism and perspectives. Alloys and Compounds, 888, 161625.
[54] Zhu, P., Chen, Y., Duan, M., Ren, Z., & Hu, M. (2018). Construction and mechanism of a highly efficient and stable Z-scheme Ag3PO4/reduced graphene oxide/Bi2MoO6 visible-light photocatalyst. Catalysis Science & Technology, 8(15), 3818-3832.