سنتز و مشخصه یابی نانو ذرات اسپینلی پایه آهن با پوشش های مختلف و بررسی توانایی آنها در تخریب فتوکاتالیستی متیلن آبی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه شیمی معدنی، دانشکده شیمی، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران

چکیده

در این پژوهش نانو ذرات NiFe2O4، Zn0.5Ni0.5Fe2O4 ، TiO2-Zn0.5Ni0.5Fe2O4 و TiO2-Zn0.5Ni0.5Fe2O4-rGO به ترتیب به روش سل-‌ژل احتراقی، همرسوبی و دو نمونه نانو کامپوزیت به روش اختلاط فیزیکی سنتز شدند. برای مشخصه یابی نانوذرات از آنالیزهای تبدیل فوریه مادون قرمز (FT-IR)، الگوی پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، مغناطیس سنج نمونه ارتعاشی (VSM)، طیف سنجی بازتابی (DRS) و اندازه گیری تخلخل سنجی جذب و واجذب با BET استفاده شده است. نتایج نشان می‌دهد که ذرات سنتز شده در مقیاس نانو می‌باشند و فرایند جذب در داخل حفرات صورت می‌گیرد. همچنین فرایند اکسیداسیون پیشرفته ( (AOP با استفاده از فتوکاتالیست برای نانو ذرات مورد ارزیابی قرار گرفت و بهترین عملکرد را نانو کامپوزیت TiO2-Zn0.5Ni0.5Fe2O4-rGO با مغناطیس اشباع (emu/g) 65/88 با درصد تخریب 95 % نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and characterization of iron-based spinel nanoparticles with different coatings and their ability in photocatalytic degradation of methylene blue

نویسندگان [English]

  • Felora Heshmatpour
  • fatemeh sadat seyed atashi
Department of Inorganic Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran, Iran
چکیده [English]

In this research, nanoparticles of NiFe2O4, Zn0.5Ni0.5Fe2O4, TiO2-Zn0.5Ni0.5Fe2O4 and TiO2-Zn0.5Ni0.5Fe2O4-rGO were synthesized respectively by combustion sol-gel method, co-precipitation and two nanocomposite samples by physical mixing method. For the characterization of nanoparticles from Fourier transform infrared (FT-IR) analysis, X-ray diffraction pattern (XRD), Scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Diffuse Reflectance Spectroscopy (DRS) and porosimetry measurements. Adsorption and desorption have been used with BET. The results show that the synthesized particles are nanoscale ,and the absorption process takes place inside the holes. Also, the advanced oxidation process (AOP) was evaluated using photocatalyst for nanoparticles and the best performance was TiO2-Zn0.5Ni0.5Fe2O4-rGO nanocomposite with saturation magnetism (emu/g) of 65.88 with It showed a destruction of 95%.

کلیدواژه‌ها [English]

  • Nano composite
  • combustion sol-gel
  • co-precipitation
  • advanced oxidation process
  • photocatalyst

This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

 [1] Andreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis today, 53(1), 51-59.‏
[2] Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1, 167-176.‏
[3] Vogelpohl, A., & Kim, S. M. (2004). Advanced oxidation processes (AOPs) in wastewater treatment. Industrial and Engineering Chemistry, 10(1), 33-40.‏
[4] Paździor, K., Bilińska, L., & Ledakowicz, S. (2019). A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chemical Engineering, 376, 120597.‏
[5] Haji, S., Benstaali, B., & Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering, 168(1), 134-139.‏
[6] Patil, A. D., & Raut, P. D. (2014). Treatment of textile wastewater by Fenton’s process as a Advanced Oxidation Process. IOSR J. Environ. Sci. Toxicol. Food. Technol, 8, 29-32.‏
[7] Amr, S. S. A., & Aziz, H. A. (2012). New treatment of stabilized leachate by ozone/Fenton in the advanced oxidation process. Waste management, 32(9), 1693-1698.‏
[8] O’Dowd, K., & Pillai, S. C. (2020). Photo-Fenton disinfection at near neutral pH: Process, parameter optimization and recent advances. Environmental Chemical Engineering, 8(5), 104063.‏
[9] Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235-1243.‏
[10] Agustina, T. E., Ang, H. M., & Vareek, V. K. (2005). A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. Photochemistry and Photobiology C: Photochemistry Reviews, 6(4), 264-273.‏
[11] De Moraes, S. G., Freire, R. S., & Duran, N. (2000). Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes. Chemosphere40(4), 369-373.‏
[12] Lu, T., Gao, Y., Yang, Y., Ming, H., Huang, Z., Liu, G., ... & Hou, Y. (2021). Efficient degradation of tetracycline hydrochloride by photocatalytic ozonation over Bi2WO6. Chemosphere, 283, 131256.‏
[13] Karunakaran, S. T., Pavithran, R., Sajeev, M., & Rema, S. M. M. (2022). Photocatalytic degradation of methylene blue using a manganese based metal organic framework. Results in Chemistry, 4, 100504.‏
[14] Cheng, Z., Ling, L., Wu, Z., Fang, J., Westerhoff, P., & Shang, C. (2020). Novel visible light-driven photocatalytic chlorine activation process for carbamazepine degradation in drinking water. Environmental Science & Technology, 54(18), 11584-11593.‏
[15] Zhu, D., & Zhou, Q. (2019). Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environmental Nanotechnology, Monitoring & Management, 12, 100255.‏
[16] Mills, A., & Le Hunte, S. (1997). An overview of semiconductor photocatalysis. photochemistry and photobiology A: Chemistry, 108(1), 1-35.‏
[17] Yi, X. H., Ji, H., Wang, C. C., Li, Y., Li, Y. H., Zhao, C., ... & Liu, W. (2021). Photocatalysis-activated SR-AOP over PDINH/MIL-88A (Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations. Applied Catalysis B: Environmental, 293, 120229.‏
[18] Eskandarian, M. R., Choi, H., Fazli, M., & Rasoulifard, M. H. (2016). Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chemical Engineering Journal, 300, 414-422.‏
[19] Zheng, S., Cai, Y., & O'Shea, K. E. (2010). TiO2 photocatalytic degradation of phenylarsonic acid. Photochemistry and Photobiology A: Chemistry, 210(1), 61-68.‏
[20] Chen, D., Cheng, Y., Zhou, N., Chen, P., Wang, Y., Li, K., ... & Ruan, R. (2020). Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Cleaner Production, 268, 121725.‏
[21] Taghavi Fardood, S., Moradnia, F., & Ramazani, A. (2019). Green synthesis and characterisation of ZnMn2O4 nanoparticles for photocatalytic degradation of Congo red dye and kinetic study. Micro Nano Letters, 14(9), 986-991.‏
[22] Kirankumar, V. S., & Sumathi, S. (2020). A review on photodegradation of organic pollutants using spinel oxide. Materials Today Chemistry, 18, 100355.‏
[23] Peng, Y., Tang, H., Yao, B., Gao, X., Yang, X., & Zhou, Y. (2021). Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chemical Engineering Journal, 414, 128800.‏
[24] Kim, G. B., On, N., Kim, T., Choi, C. H., Hur, J. S., Lim, J. H., & Jeong, J. K. (2023). High Mobility IZTO Thin‐Film Transistors Based on Spinel Phase Formation at Low Temperature through a Catalytic Chemical Reaction. Small Methods, 2201522.‏
[25] Gul, S., Yousuf, M. A., Anwar, A., Warsi, M. F., Agboola, P. O., Shakir, I., & Shahid, M. (2020). Al-substituted zinc spinel ferrite nanoparticles: preparation and evaluation of structural, electrical, magnetic and photocatalytic properties. Ceramics International, 46(9), 14195-14205.‏
[26] Rashid, J., Barakat, M. A., Mohamed, R. M., & Ibrahim, I. A. (2014). Enhancement of photocatalytic activity of zinc/cobalt spinel oxides by doping with ZrO2 for visible light photocatalytic degradation of 2-chlorophenol in wastewater. Photochemistry and Photobiology A: Chemistry, 284, 1-7.‏
[27] Hezam, F. A., Rajeh, A., Nur, O., & Mustafa, M. A. (2020). Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Physica B: Condensed Matter, 596, 412389.‏
[28] Djellabi, R., Ali, J., Yang, B., Haider, M. R., Su, P., Bianchi, C. L., & Zhao, X. (2020). Synthesis of magnetic recoverable electron-rich TCTA@ PVP based conjugated polymer for photocatalytic water remediation and disinfection. Separation and Purification Technology, 250, 116954.‏
[29] Xu, B., Ding, T., Zhang, Y., Wen, Y., Yang, Z., & Zhang, M. (2017). A new efficient visible-light-driven composite photocatalyst comprising ZnFe2O4 nanoparticles and conjugated polymer from the dehydrochlorination of polyvinyl chloride. Materials Letters, 187, 123-125.‏
[30] Zhu, H., Fang, M., Huang, Z., Liu, Y. G., Chen, K., Tang, C., ... & Wu, X. (2016). Novel carbon-incorporated porous ZnFe2O4 nanospheres for enhanced photocatalytic hydrogen generation under visible light irradiation. RSC advances, 6(61), 56069-56076.‏
[31] Yang, L., Xiang, Y., Jia, F., Xia, L., Gao, C., Wu, X., & Song, S. (2021). Photo-thermal synergy for boosting photo-Fenton activity with rGO-ZnFe2O4: Novel photo-activation process and mechanism toward environment remediation. Applied Catalysis B: Environmental, 292, 120198.‏
[32] Wang, Y., Xiao, X., Lu, M., & Xiao, Y. (2022). 3D network-like rGO-MoSe2 modified g-C3N4 nanosheets with Z-scheme heterojunction: Morphology control, heterojunction construct, and boosted photocatalytic performances. Alloys and Compounds, 897, 163197.‏
[33] Guo, P., Lv, M., Han, G., Wen, C., Wang, Q., Li, H., & Zhao, X. S. (2016). Solvothermal synthesis of hierarchical colloidal nanocrystal assemblies of ZnFe2O4 and their application in water treatment. Materials, 9(10), 806.‏
[34] Sripriya, R. C., Ezhil, A., Madhavan, J., & Victor, A. R. (2017). Synthesis and Characterization studies of ZnFe2O4 nanoparticles. Mechanics, Materials Science & Engineering Journal, 9(1).‏
[35] Dippong, T., Cadar, O., Deac, I. G., Lazar, M., Borodi, G., & Levei, E. A. (2020). Influence of ferrite to silica ratio and thermal treatment on porosity, surface, microstructure and magnetic properties of Zn0. 5Ni0. 5Fe2O4/SiO2 nanocomposite .Alloys and Compounds, 828, 154409.‏
[36] Zhang, J. Y., Boyd, I. W., O'sullivan, B. J., Hurley, P. K., Kelly, P. V., & Senateur, J. P. (2002). Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. Non-Crystalline Solids, 303(1), 134-138.‏
[37] Amini, Z., Givianrad, M. H., Aberoomand Azar, P., Husain, S. W., & Saber Tehrani, M. (2020). Photocatalytic and photoelectrocatalytic degradation of congo red dye using Cu and S co-doped TiO2/SiO2 nanoparticles under the purple LED light irradiation: optimization of operational conditions. Applied Chemistry, 15(54), 299-314.‏ (in persion)
[38] Samadi, S., Ghodratnia, S., Montazeri Hadesh, H., & Zakaria, S. (2019). Removal of copper (II) from aqueous solutions by organic polymer-modified TiO2/bentonite nanocomposites. Applied Chemistry, 14(50), 87-104.‏ (in persion)
[39] Hakamizadeh, M., Afshar, S., Tadjarodi, A., Hshemianzadeh, M., Fadaie, M. H., Bozorgi, B. (2013). Hydrogen production by photocatalytic water splitting. Applied Chemistry, 8(28), 9-18.‏ (in persion)
[40] Zhou, Y., & Switzer, J. A. (1996). Growth of cerium (IV) oxide films by the electrochemical generation of base method. alloys and compounds, 237(1-2), 1-5.‏
[41] Taleshi, F., Zolfaghari, A., & Pahlavan, A. (2015). Synthesis of Cu0.5Mg0.5Fe2O4 nanoparticle by chemical precipitation method and its effect on reduction of charge transfer resistant in electron transfer systems. Applied Chemistry, 10(36), 23-28.‏ (in persion)
[42] Amulya, M. S., Nagaswarupa, H. P., Kumar, M. A., Ravikumar, C. R., & Kusuma, K. B. (2020). Enhanced photocatalytic and electrochemical properties of Cu doped NiMnFe2O4 nanoparticles synthesized via probe sonication method. Applied Surface Science Advances, 2, 100038.‏
[43] Abharya, A., & Gholizadeh, A. (2021). Synthesis of a Fe3O4-rGO-ZnO-catalyzed photo-Fenton system with enhanced photocatalytic performance. Ceramics International, 47(9), 12010-12019.‏
[44] Zhang, J. Y., Boyd, I. W., O'sullivan, B. J., Hurley, P. K., Kelly, P. V., & Senateur, J. P. (2002). Nanocrystalline TiO2 films studied by optical, XRD and FTIR spectroscopy. Non-Crystalline Solids, 303(1), 134-138.‏
[45] Ramezan Zade Noshabadi, A., & Ehsani, M. H. (2020). Synthesis of La0.6 Sr0.4MnO3 nanoparticles using microwave irradiation and investigation of its photocatalytic activity. Applied Chemistry, 15(56), 313-326.‏ (in persion)
[46] Khaleghi, H., & Ehsani, M. H. (2022). Synthesis and characterization of TM-doped CuO nanosheets (TM= Fe, Mn). Applied Physics A, 128(11), 969.‏                                                
[47] Esmaeili, S., Ehsani, M. H., & Fazli, M. (2020). Structural, optical and photocatalytic properties of La0. 7Ba0. 3MnO3 nanoparticles prepared by microwave method. Chemical Physics, 529, 110576.‏           
[48] Wu, W., Li, Y., Zhou, K., Wu, X., Liao, S., & Wang, Q. (2012). Nanocrystalline Zn 0.5 Ni 0.5 Fe 2 O 4: preparation and kinetics of thermal process of precursor. thermal analysis and calorimetry, 110(3), 1143-1151.‏
[49] Yu, L., Wang, L., Sun, X., & Ye, D. (2018). Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. environmental sciences, 73, 138-146.‏
[50] Darabdhara, G., Das, M. R., Singh, S. P., Rengan, A. K., Szunerits, S., & Boukherroub, R. (2019). Ag and Au nanoparticles/reduced graphene oxide composite materials: synthesis and application in diagnostics and therapeutics. Advances in colloid and interface science, 271, 101991.‏
[51] Afje, F. R., & Ehsani, M. H. (2018). Size-dependent photocatalytic activity of La0. 8Sr0. 2MnO3 nanoparticles prepared by hydrothermal synthesis. Materials Research Express, 5(4), 045012.‏
[52] Das, A., Adak, M. K., Mahata, N., & Biswas, B. (2021). Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect. Molecular Liquids, 338, 116479.‏
[53] Ge, M., Hu, Z., Wei, J., He, Q., & He, Z. (2021). Recent advances in persulfate-assisted TiO2-based photocatalysis for wastewater treatment: Performances, mechanism and perspectives. Alloys and Compounds, 888, 161625.‏
[54] Zhu, P., Chen, Y., Duan, M., Ren, Z., & Hu, M. (2018). Construction and mechanism of a highly efficient and stable Z-scheme Ag3PO4/reduced graphene oxide/Bi2MoO6 visible-light photocatalyst. Catalysis Science & Technology, 8(15), 3818-3832.‏