[1] Gholap, S.S., (2016). Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. European journal of medicinal chemistry, 110, 13-31.
[2] Domagala, A., Jarosz, T., & Lapkowski, M. (2015). Living on pyrrolic foundations–Advances in natural and artificial bioactive pyrrole derivatives. European Journal of Medicinal Chemistry, 100, 176-187.
[3] Paul, S., Pal, G., & Das, A. R. (2013). Three-component synthesis of a polysubstituted pyrrole core containing heterocyclic scaffolds over magnetically separable nanocrystalline copper ferrite. RSC advances, 3(23), 8637-8644.
[4] Silveira, C.C., Mendes, S.R., Martins, G.M., Schloesser, S.C. & Kaufman, T.S. (2013). Modular CeCl3·7H2O-catalyzed multi-component synthesis of 1, 2, 3, 4-tetrasubstituted pyrroles under microwave irradiation and their further trichloroisocyanuric acid-mediated conversion into 5 sulfenylpyrrole derivatives. Tetrahedron, 69(43), 9076-9085. (in persion)
[5] Wang, S.G., Liu, Y. & Cramer, N. (2019). Asymmetric Alkenyl C− H Functionalization by CpxRhIII forms 2H‐Pyrrol‐2‐ones through [4+ 1] Annulation of Acryl Amides and Allenes. Angewandte Chemie, 131(50), 18304-18308. (in persion)
[6] Wu, Y.T., Zhang, R., Duan, X.Y., Yu, H.F., Sun, B.Y. & Qi, J.(2020). Access to dihydropyrano [3, 2-b] pyrrol-5-ones skeletons by N-heterocyclic carbene-catalyzed [3+ 3] annulations. Chemical Communications, 56(68), pp.9854-9857. (in persion)
[7] Mokhtarpor, M., Shekaari, H., & Zafarani Moatar, M. T. (2020). Measurements of the naproxen solubility in some choline-based deep eutectic solvents as novel green solvents in the pharmaceutical industry and the performance of the UNIIFAC model in this systems. Applied Chemistry, 15(54), 289-298.
[8] Mollashahi, E., & Bazgiri, A. (2017). Acidic Brønsted ionic liquids catalyzed the preparation of 2-amino-3-cyanopyridine derivatives under ambient and solvent-free conditions. Applied Chemistry, 12(45), 11-20.
[9] Nazarzadeh Zare, E., Mansour Lakouraj, M., & Ashna, A. (2018). Construction, characterization and properties investigation of polyaniline different nanostructures in acidic ionic liquids media based on imidazole and pyridine. Applied Chemistry, 13(48), 251-268.
[10] Imperato, G., König, B. & Chiappe, C. (2007). Ionic green solvents from renewable resources. European Journal of Organic Chemistry, 2007(7), 1049-1058.
[11] Seddon, K.R. (1997). Ionic liquids for clean technology. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 68(4), 351-356.
[12] Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 99(8), 2071-2084.
[13] Haque, M., Abdurrokhman, I., Idström, A., Li, Q., Rajaras, A., Martinelli, A., & Enoksson, P. (2022). Exploiting low-grade waste heat to produce electricity through supercapacitor containing carbon electrodes and ionic liquid electrolytes. Electrochimica Acta, 403, 139640.
[14] Wilkes, J. S., Levisky, J. A., Wilson, R. A., & Hussey, C. L. (1982). Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorganic Chemistry, 21(3), 1263-1264.
[15] Brennecke, J. F., & Maginn, E. J. (2001). Ionic liquids: innovative fluids for chemical processing. American Institute of Chemical Engineers. AIChE Journal, 47(11), 2384.
[16] Yang, Q., & Dionysiou, D. D. (2004). Photolytic degradation of chlorinated phenols in room temperature ionic liquids. Journal of Photochemistry and Photobiology A: Chemistry, 165(1-3), 229-240.
[17] Seddon, K. R. (1996). Room-temperature ionic liquids: neoteric solvents for clean catalysis. Kinetics and Catalysis, 37(5), 693-697.
[18] Lagrost, C., Carrie, D., Vaultier, M., & Hapiot, P. (2003). Reactivities of some electrogenerated organic cation radicals in room-temperature ionic liquids: toward an alternative to volatile organic solvents?. The Journal of Physical Chemistry A, 107(5), 745-752.
[19] Shariati, A., & Peters, C. J. (2005). High-pressure phase equilibria of systems with ionic liquids. The Journal of supercritical fluids, 34(2), 171-176.
[20] Zhao, H., Xia, S., & Ma, P. (2005). Use of ionic liquids as ‘green’solvents for extractions. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80(10), 1089-1096.
[21] Tayebee, R., Jomei, M., Maleki, B., Razi, M. K., Veisi, H., & Bakherad, M. (2015). A new natural based ionic liquid 3-sulfonic acid 1-imidazolopyridinium hydrogen sulfate as an efficient catalyst for the preparation of 2H-indazolo [2, 1-b] phthalazine-1, 6, 11 (13H)-triones. Journal of Molecular Liquids, 206, 119-128.
[22] Meshkatalsadat, M. H., Mahmoudi, A., Lotfi, S., Pouramiri, B., & Foroumadi, A. (2022). Green and four-component cyclocondensation synthesis and in silico docking of new polyfunctionalized pyrrole derivatives as the potential anticholinesterase agents. Molecular Diversity, 1-15.