[1] Asgary, S., Rahimi, P. A. R. I. V. A. S. H., Mahzoni, P., & Kabiri, N. A. J. M. E. H. (2010). Hypoglycemic effect of extract of Juglans regia L. leaves on alloxan-induced diabetic rats. Iranian Journal of Medicinal and Aromatic Plants, 26(1), 30-39.
[2] El-Kaissi, S., & Sherbeeni, S. (2011). Pharmacological management of type 2 diabetes mellitus: an update. Current diabetes reviews, 7(6), 392-405.
[3] Aghasi, M., Ghazi-Zahedi, S., Koohdani, F., Siassi, F., Nasli-Esfahani, E., Keshavarz, A., ... & Sotoudeh, G. (2018). The effects of green cardamom supplementation on blood glucose, lipids profile, oxidative stress, sirtuin-1 and irisin in type 2 diabetic patients: a study protocol for a randomized placebo-controlled clinical trial. BMC complementary and alternative medicine, 18(1), 1-6.
[4] Dehghan, H., Salehi, P., & Amiri, M. S. (2018). Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Industrial Crops and Products, 117, 303-309.
[5] Asano, N. (2009). Sugar-mimicking glycosidase inhibitors: bioactivity and application. Cellular and Molecular Life Sciences, 66, 1479-1492.
[6] Standl, E., & Schnell, O. (2012). Alpha-glucosidase inhibitors 2012–cardiovascular considerations and trial evaluation. Diabetes and Vascular Disease Research, 9(3), 163-169.
[7] Gao, H., Huang, Y. N., Xu, P. Y., & Kawabata, J. (2007). Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz. Food Chemistry, 105(2), 628-634.
[8] Jin, H., Zhang, Y. J., Jiang, J. X., Zhu, L. Y., Chen, P., Li, J., & Yao, H. Y. (2013). Studies on the extraction of pumpkin components and their biological effects on blood glucose of diabetic mice. Journal of food and drug analysis, 21(2), 184-189.
[9] Jung, M., Park, M., Lee, H. C., Kang, Y. H., Kang, E. S., & Kim, S. K. (2006). Antidiabetic agents from medicinal plants. Current medicinal chemistry, 13(10), 1203-1218.
[10] de Torre, M. P., Cavero, R. Y., Calvo, M. I., & Vizmanos, J. L. (2019). A simple and a reliable method to quantify antioxidant activity in vivo. Antioxidants, 8(5), 142.
[11] Iranshahi, M., Amanolahi, F., & Schneider, B. (2012). New sesquiterpene coumarin from the roots of Ferula latisecta. Avicenna Journal of Phytomedicine, 2(3), 133.
[12] Iranshahi, M., Hassanzadeh-Khayat, M., Bazzaz, B. S. F., Sabeti, Z., & Enayati, F. (2008). High content of polysulphides in the volatile oil of Ferula latisecta Rech. F. et Aell. fruits and antimicrobial activity of the oil. Journal of Essential Oil Research, 20(2), 183-185.
[13] Iranshahi, M., Shaki, F., Mashlab, A., Porzel, A., & Wessjohann, L. A. (2007). Kopetdaghins a− E, sesquiterpene derivatives from the aerial parts and the roots of Dorema kopetdaghense. Journal of natural products, 70(8), 1240-1243.
[14] Zamani Taghizadeh Rabe, S., Iranshahi, M., Rastin, M., Zamani Taghizadeh Rabe, S., & Mahmoudi, M. (2015). Anti-inflammatory effect of new kopetdaghins A, C and E from Dorema kopetdaghense. Food and Agricultural Immunology, 26(3), 430-439.
[15] Mehrpour, M., Yousefi, M., AfzalAghaee, M., Rakhshandeh, H., Azizi, H., Hadianfar, A., ... & Bahrami-Taghanaki, H. (2020). Evaluation of Dorema Ammoniacum and Acupuncture's Therapeutic Effects in Patients With Ischemic Stroke: A Randomized Controlled Clinical Trial.
[16] Zibaee, E., Amiri, M. S., Boghrati, Z., Farhadi, F., Ramezani, M., Emami, S. A., & Sahebkar, A. (2020). Ethnomedicinal uses, phytochemistry and pharmacology of Dorema species (Apiaceae): a review. Journal of Pharmacopuncture, 23(3), 91.
[17] Dehghan, H., Sarrafi, Y., & Salehi, P. (2016). Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. Journal of food and drug analysis, 24(1), 179-188.
[18] Bahrami Samani, L., Fooladgar, M., & Amjad, L. (2015) Investigation of storage time effect on phytochemical properties of Artemisia deserti, Applied Chemistry, 10(35), 111-130. (in persion)
[19] Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
[20] McCue, P., KWON, Y. I., & Shetty, K. (2005). Anti‐amylase, anti‐glucosidase and anti‐angiotensin i‐converting enzyme potential of selected foods. Journal of food biochemistry, 29(3), 278-294.
[21] Dehghan, H., Sarrafi, Y., Salehi, P., & Nejad Ebrahimi, S. (2017). α-Glucosidase inhibitory and antioxidant activity of furanocoumarins from Heracleum persicum. Medicinal Chemistry Research, 26, 849-855.
[22] Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6), 945-948.
[23] Dehghan, H., & Sadani, S. (2018). Antioxidant activity and phenolic content of the fractions from some Iranian antidiabetic plants. ASAG, 2, 73-77.
[24] Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152-178). Academic press.
[25] Mohadjerani, M., & Pakzad, K. (2013). Evaluation of total phenolic content and antioxidant activity of Nelumbo nucifera seed from north of Iran. Applied Chemistry, 7(25), 45-49.
[26] Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).
[27] Ordonez, A. A. L., Gomez, J. D., & Vattuone, M. A. (2006). Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food chemistry, 97(3), 452-458.