نانو کامپوزیت اسپینل معکوس و اکسید قلع برای اندازه گیری پیریدیم در نمونه های دارویی و بیولوژیکی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

دانشکده شیمی، دانشگاه پیام نور،تهران، ایران

چکیده

دراین کار تحقیقاتی نانو کامپزیت  SnO2-Zn2SnO4  با روش حالت جامد ساخته شد. خصوصیات این نانو ذرات با تکنیکهای مختلف از قبیل اسپکتروسکوپی پرتو ایکس و میکروسکوپ نشر الکترون بررسی شد. سپس یک حسگر الکتروشیمیایی برای اندازه گیری پیریدیم با استفاده از این نانو ذرات ساخته شد. این حسگر خواص الکترو کاتالیست بسیار عالی برای اندازه گیری پیریدیم نشان داد. پیک اکسایش این دارو در محدوده 0.3 تا 607.0 میکرومولار از پیریدیم خطی است. حد تشخیش 0.009 میکرومولار برای این روش پیشنهاد شد. این روش پیشنهادی بسیار انتخاب گر و ساده با دقت بالا برای اندازه گیری پیریدیم در نمونه های دارویی و مایعات بیولوژیکی است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of tin oxide- inverse spinel zinc stannate nanocomposite modified carbon paste electrode for the voltammetric determination of pyridium in pharmaceutical and biological samples

نویسندگان [English]

  • Masoumeh Taei
  • Fardin Abedi
چکیده [English]

The SnO2-Zn2SnO4 nanocomposite was successfully prepared via a simple solid state method. The resulted nanocomposite was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Then, a novel pyridium sensor has been developed based on SnO2-Zn2SnO4 nanocomposites modified carbon paste electrode (SnO2-Zn2SnO4/CPE).   The fabricated sensor exhibits outstanding electrocatalytic activities toward the oxidation of pyridium. The  oxidation  peak  current  was  proportional  to the  concentration  of  pyridium  from  0.3  to   607.0  µM with  a detection  limit  of   0.009  µM  at signal to noise ratio of 3. The proposed method was examined as a selective, simple and precise method for voltammetric determination of pyridium in real samples with satisfactory results.

کلیدواژه‌ها [English]

  • SnO2-Zn2SnO4 nanocomposites
  • Pyridium
  • Carbon paste electrode
[1] E.Shang, B. Xiang, G.Liu, S.Xie, W. Wei, J. Lu, Determination of phenazopyridine in human plasma via LC–MS and subsequent development of a pharmacokinetic model, Anal. Bioanal. Chem. 382 (2005) 216–222.
[2] A.M. Onder, V. Espinoza, M.E. Berho,J. Chandar, G.Zilleruelo,C. Abitbol,Acute renal failure due to phenazopyridine overdose: case report and review of the literature, Pediatr. Nephrol. 21(2006) 1760–1764.
[3] A. A. Ensafi, B. Arashpour, B. Rezaei, A.R.Allafchian, Highly  selective  differential  pulse  voltammetric  determination  of phenazopyridine  using  MgCr2O4nanoparticles  decorated MWCNTs-modified  glassy  carbon  electrode, Colloids Surf. B Biointerfaces 111 (2013) 270–  276.
[4] S.M. Sabry, Adsorptive stripping voltammetric assay of phenazopyridine hydrochloride in biological fluids and pharmaceutical preparations, Talanta 50 (1999) 133-40.
 [5]D. Fearing, G. Piva, R.K. Cohen, Determination of phenazopyridine in human plasma by high-performance liquid chromatography, Chromatographia 52 (2000) 179–80.
[6] I.M. Palabıyık  ,F. Onur, Liquid Chromatographic and Spectrophotometric Determination of Phenazopyridine Hydrochloride, Ampicilline Trihydrate, and Nitrofurantoine in Pharmaceutical Preparations, Anal. Lett. 37( 2004)  2125-2150.
[7]K. Li, Q. Chen,Z. Zhang, P. Zhou, P. Li, J. Liu, J. Zhu, Determination of phenazopyridine in human plasma by GC-MS and its pharmacokinetics, J Chromatogr Sci 46(2008) 686-689.
[8] Chen Q, Li K, Zhang Z, Li P, Liu J, Li Q, Development and validation of a gas chromatography-mass spectrometry method for the determination of phenazopyridine in rat plasma: application to the pharmacokinetic study, Biopharm. Drug Dispos. 28(2007)  439-444.
[9] The United States Pharmacopeia (USP 28) and The National Formulary 23. Pharmacopeial  convention Inc. U. S. A.( 2005) 1523-1524.
[10] L.Szabolcs,Spectrophotometric determination of phenazopyridine chloride in Vestin drags, Acta Pharm. Hung. 48 (1978) 155-160.
 
[11] Y. Q. Jiang, C.X. He, R. Sun,Z.X. Xie, L.S.Zheng,  Synthesis of Zn2SnO4 nanoplate-built hierarchical cube-like structures with enhanced gas-sensing, Mater.Chem. Phys. 136(2012)  698-704.
[12]Y. Lu, Y.Tang, Two-step synthesis and ethanol sensing properties of Zn2SnO4-SnO2 nano composites, Mater. Chem. Phys. 92(2005) 5-9.
[13]P. Jounploy, S.Thongtem, T.Thongtem, A.Phuruangrat ,Photocatalytic activity of Zn2SnO4-SnO2 nanocomposites produced by sonochemistry in combination with high temperature calcinations, Superlattice Microst. 74(2014)  173-183.
[14] E.L. Folio, J. M.Simoes, M.A. Mazutti, S.L. Jahn, E.I. Muller, L. S. Pereira, E. M. M. Flores, Application of Zn2SnO4 photocatalyst prepared by microwave-assisted hydrothermal route in the degradation of organic pollutant under sunlight, Ceram Int 39(2013) 4569-4574.
[15]H.Ullah, A. Khatoon, Z.khtar, Synthesis and photocatalytic study of SnO2/Zn2SnO4 nanocomposite prepared by a sol - gel method using source molecular precursor, Mater. Res Express 1(2014) 045001.
[16] P. Surmann, P. Aswakun, Simultaneous polarographic determination of nitrofurantoin and phenazopyridine in tablets, Arch. Pharm. 318(1985)14-21.
[17] C. Meryem; Y. Selahattin, D. Yusuf, T. Gulen, Y. Sultan, E. Huseyin, E.N, Osteryoung Square Wave Voltammetric Determination of Phenazopyridine Hydrochloride in Human Urine and Tablet Dosage Forms Based on Electrochemical Reduction at Carbon Paste Electrode, Curr. Pharm. Anal. 3 (2007)141-145.
[18] C. Demirtas, S. Yilmaz, G. Saglikoglu, M. Sadikoglu , Electrochemical Determination of Phenazopyridine Hydrocloride using Poly(p-Aminobenzene Sulfonic Acid) Film Modified Glassy Carbon Electrode, Int. J. Electrochem. Sci.10 ( 2015) 1883-1892.
[19]  F. Belal, Amperometric Determination of Phenazopyridine Hydrochloride in a Flowing Stream at the Glassy Carbon Electrode, J. Assoc. Off. Anal. Chem. 68(1997)1207-1209.
[20]  M. Taei, F. Hasanpour, M. Movahedi and Sh. Mohammadian, Fast and Selective Determination of  Phenazopyridine at a Novel Multi-walled Carbon Nanotubes Modified ZnCrFeO4 Magnetic Nanoparticles Paste Electrode,  RSC Adv. 5 (2015) 37431-37439.
[21]A.A. Firooz, A.R.Mahjoub,A.A. Khodadadi, Effect of flower-like, sheet-like and granular SnO2 nanostructures prepared by solid-state reactions on CO sensing, Mater. Chem. Phys. 115(2009) 196-199.
[22] A.Ayeshamariam, S.Ramalingam, M.Bououdina, M.Jayachandran, Preparation and characterizations of SnO2 nanopowder and spectroscopy (FT-IR, FT-Raman, UV-Visible and NMR) analysis using HF and DFT calculations, Spectrochim. Acta A 118 (2014) 1135-1143.
[23]C.G. Anchieta, D.Sallet, E.L.Foleho,S.S. Silva, O.Chiavone-Filho,C.A.O. Nascimento,  Synthesis of ternary zinc spinel oxides and their application in the photodegradation of organic pollutant,  Ceram. Int. 40(2014) 4173-4178.
[24] R. P. Gupta, Physical methods in heterocyclic chemistry, Wiley, New York, 1984.
[25] Z. Galus, Fundamentals of Electrochemical Analysis, Ellis Horwood, New York, 1976.