ارزیابی قدرت جذب وجداسازی آمینو اسیدها (Arg.و .Glu) توسط اگزروژل تترااتوکسی اورتو‌سیلان

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم، دانشگاه پیام نور تهران، تهران، ایران

چکیده

در این تحقیق توانایی اگزروژل تترا اتوکسی اورتو سیلان (TEOS) به عنوان جاذبی ارزان، ایمن با ساختار قوی مکانیکی در جداسازی آمینو اسیدهای اسیدی( .Glu) و بازی( Arg.) در ستون کروماتوگرافی جذبی مورد مطالعه قرار گرفت.ابتدا اثر pHو سپس تاثیر میزان آب گریزی سطح بستر جاذب و همچنین طول ستون کروماتوگرافی بر روی میزان وسرعت تخلیص مورد ارزیابی قرار گرفت.با توجه به نتایج بدست آمده ،در pH خنثی(7) میزان تفکیک دو نمونه آمینو اسید مورد آزمایش بهتر صورت گرفت. در ادامه با تهیه مشتقات اورموسیل دار جاذب اگزروژل (TEOS + Me، TEOS + Et و TEOS + Pro) و آزمایش بر روی نمونه آمینو اسیدهای فوق الذکر ،مشخص گردید که تاثیر هیدروفوبیسیتی سطح بستر در مقایسه با تاثیر عامل pH قابل ملاحظه نیست .افزایش طول ستون کروماتوگرافی بر تفکیک و جداسازی بهتر نمونه های فوق موثر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Studying the process of absorption and separation of amino acids (Arg and Glu) by tetraethoxyortho-silane exogel adsorbent

نویسندگان [English]

  • Ali Asl Rousta
  • hassan hassani
  • Alireza Akbari
  • Noroallah Feizi
department of chemistry Payam noor university Tehran, Iran
چکیده [English]

In this research, the ability of tetraethoxyorthosilane (TEOS) exogel as a cheap, safe adsorbent with a strong mechanical structure was studied in the separation of acidic (.Glu) and basic (Arg.) amino acids in an absorption chromatography column. First, the effect of pH and then The effect of the length of the chromatography column as well as the hydrophobicity factor of the adsorbent surface on the amount and speed of purification was evaluated. According to the results, the separation rate of the two tested amino acid samples was better at neutral pH (7). In the following, by preparing ormucil derivatives of exogel absorbent (TEOS + Me, TEOS + Et and TEOS + Pro) and testing on the aforementioned amino acids sample, it was found that the effect of the hydrophobicity of the substrate surface is not significant compared to the effect of the pH factor. The length of the chromatography column was effective on the better separation of the above samples.

کلیدواژه‌ها [English]

  • Tetraethoxyorthosilane exogel (TEOS)
  • Ormusil
  • amino acid
  • absorption

This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

  1. [1] Shamsodin, M., Haghbeen, K., & Fazli, M. (2015). Removal of Strontium (II) from aqueous solution by adsorption using Xerogel synthesized from TEOS: Batch and Fixed-bed Study. Applied Chemistry, 9(33), 35-50. (in persion)

    [2] Aslrousta, A., Akbari, A., Haghbeen, K., & Fazli, M. (2017). Investigation of adsorption of Chromium & Copper ions on TEOS xerogel. Applied Chemistry, 12(42), 167-180. (in persion)

    [3] Mackenzie, J. D., Bescher, E. P. (1998). Structures, properties and potential applcations of Ormosils. Sol-Gel Sci.Technol., 13, 371-377.

    [4] Kresg, C.T., leonowics, M.E., Roth,W.J., Vartuli, J.C., Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature (London), 359, 710-712.

    [5] Meng, M., Stievano, L., Lambert, J. F. (2004). Adsorption and thermal condensation mechanisms of amino acids on oxide supports. Langmuir, 20, 914-923.  

    [6] Vinu, A., Hossain, K. Z., Kumar, G. S., Ariga, K. (2006). Adsorption of L-histidine over mesoporous carbon molecular sieves. Carbon, 44, 530-536.

    [7] lDreze, A., & Reith, W. S. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem, 62(2), 315–323.

    [8] Macpherson, H. T. (1946). The basic amino-acid content of proteins. Biochem, 40(4), 470–481.

    [9] Hill, R. L., & Schmidt, W. R. (1962).  The D-galactose oxidase of Polyporus circinatus. Biol. Chem, 237, 2736-2743.

    [10] Grzegorczyk, D. S., Carta, G. (1996).  Adsorption of amino acids on porous polymeric adsorbents. Chem. Eng. Sci, 51(5), 819-826.

    [11] Ikahsan, J., Johnson, B. B., Wells, J. D., Angove, M. J. (2004). Modification of Silica Nanoparticles with Cysteine or Methionine Amino Acids for the Removal of Uranium (VI) from Aqueous Solution. Colloid Interface Sci, 273(1), 1-5.

    [12] Zimmerman, A. R., Goyne, K. W., Chorover, J., Komarneni, S., Brantley, S. L. (2004). Mineral mesopore effects on nitrogenous organic matter adsorption. Org. Geochem, 35, 355-375.

    [13] Vinu, A., Hossain, K. Z., Kumar, G. S., Ariga, K. (2006). Adsorption of l-histidine over mesoporous carbon molecular sieves. Carbon, 44(3), 530-536.

    [14] Krohn, J. E., Tsapatsis, M. (2005). Amino acid adsorption on zeolite β. Langmuir, 21(19), 8743-8750.

    [15] Titus, E., Kalkar, A. K., Gaikar, V. G. (2003). Equilibrium studies of adsorption of amino acids on NaZSM-5 zeolite. Colloids Surf., 223(1), 55-61.

    [16] Zhiani, R. (2017). Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study. Applied Surface Science, 409, 35-44.

    [17] Hashemi, K., Shahbazi, K. (2022). Determination of Free Amino Acids in Fertilizer Samples by Switchable Hydrophilic Solvent-Based Extraction (SHSE) Followed by HPLC-UV. Iranian Journal of Analytical Chemistry, 9(1), 56-62. (in persion)

    [18] Jonckheere, D., A. Steele, J., Claes, B., Bueken, B., Claes, L., Lagrain, B.,

    1. J. Roeffaers, M., E. De Vos, D. (2017). Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal–Organic Frameworks. ACS .Appl. Mater. Interfaces, 9(35), 30064-30073.

    [19] Etsushiro, D., Shibata, D., Matoba, T. (1981). Modified colorimetric ninhydrin methods for peptidase assay. Anal. Bio chem ., 118(1), 173-184.

    [20] Sven, H. B.,Grier, D. G. (2001). The charge of glass and silica surfaces. J. Chem. Phys. 115 , 6716-6721.

    [21] Dai, C., Liu, C., Wei, J., Hong, H., Zhao, Q. (2010). Molecular imprinted macroporous chitosan coated mesoporous silica xerogels for hemorrhage control. Biomaterials,31 (30),7620-30.

    [22] René Vacher, T., Pelous, J., & Courtens, E. (1988). Structure and self-similarity of silica aerogels‏. PhysicalReview B, 37, 6500.

    [23] Frolova, A. M., Chukhlieb,M. A., Drobot, A. V., Kryshtal, A. P., Loginova, L. P., Boichenko, A. P. (2009). Producing of monolithic layers of silica for thin-layer chromatography by sol-gel synthesis. The Open Surface Science Journal, 1, 40-45.

     [24] Ibrahem, S., & Ibrahem, H. (2013). Preparation and study properties of xerogel silica using sol-gel method. International Journal of Application or Innovation in Engineering & Management ,2(9),111-116.

     [25] Venkateswara Rao, A., Wagh, P.B., Haranath, D.,Risbud, P.P., & Kumbhare, S.D. (1999). Influence of temperature on the physical properties of TEOS silica xerogels‏. Ceramics International, 25, 505-509.

    [26] Ponta, O., Mocuta, H., Vasilescu, M. & Simon, S. (2011). Structural characterization of amorphous and nanostructured bismuth silicate xerogels. Journal of Sol-Gel Science and Technology, 58, 530–534.

    [27] Wang, X. D., Shen, Z. X., Sang, T., Cheng, X. B., Li, Z. F., Chen, L.Y., Wang, Z.S. (2010). Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate‏. J. Colloid Interface Sci, 341(1), 23-9.

    [28] Pavan, F. A., Lima,I. S., Benvenutti, E. V., Gushikem,Y., Airoldi,C. (2004). Hybrid aniline/silica xerogel cation adsorption and thermodynamics of interaction‏J. Colloid Interface Sci. 275(2), 386-91.

    [29] Haghbeen, K., Hassani, S., Fazli, M. (2015). Nanoporous Xerogel for Adsorption of Pb2+ and Cd2+. JNS, 5(3), 209-218.

    [30] Gao, Q., Xu, W., Xu, Y., Wu, D., Sun, Y., Deng, F. (2008). Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.‏ J. Phys. Chem, 112(7), 2261-7.

    [31] Khater, S., Canault, B., Azzimani, T., Bonnet, P., West, C. (2018) . Thermodynamic enantioseparation behavior of phenylthiohydantoin-amino acid derivatives in supercritical fluid chromatography on polysaccharide chiral stationary phases. J. Sep. Sci, 41(6), 1450-1459.

    [32] Woiwode, U., Neubauer, S., Lindner, W., Buckenmaier, S., Lämmerhofer, M. (2018), Enantioselective multiple heartcut two-dimensional ultra-high-performance liquid chromatography method with a Coreshell chiral stationary phase in the second dimension for analysis of all proteinogenic amino acids in a single run.  J. Chromatograph. 1562, 69-77.

    [33] Qian, H., Liu, F., Liu, X., Yang, C., & Yan, X. (2022). Chiral covalent organic framework-monolith as stationary phase for high-performance liquid chromatographic enantioseparation of selected amino acids. Analytical and Bioanalytical Chemistry, 414(18), 5255-5262.