جذب آرسنیک (III) با استفاده از نانو کامپوزیت پلی تیوفن/ Fe2 O3 سنتز شده در محیط آبی/ غیر آبی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

دانشکده مهندسی شیمی، دانشگاه شمال، آمل، ایران

چکیده

پلی تیوفن و نانوکامپوزیت‌های آن با روشپلیمریزاسیون اکسایشی شیمیایی مونومر تیوفن با استفاده از کلریدآهن (III) به عنوان اکسیدانت و پلی وینیل پیرولیدون به عنوان سورفکتانت در محیط آبی/غیر آبی تهیه شد. پلی تیوفن و نانوکامپوزیت‌های آن از نظر مورفولوژی، نوع گروه‌های عاملی سطحی و ساختار کریستالی توسط میکروسکوپ الکترونی روبشی (SEM)، طیف مادون قرمزفوریر(FTIR) و پراش اشعه ایکس(XRD) مشخصه‌یابی شدند. تصاویر میکروسکوپ الکترونی روبشی محصولات، مورفولوژی سطحی متفاوتی را در حضور پلی وینیل پیرولیدون و نانو ذره اکسید آهن نشان دادند. نتایج نشان داده شده از طیف سنج مادون قرمز بیانگر آن است که شدت پیک‌ها به نوع سورفکتانت بستگی دارد. پیک های اضافی در منحنی XRD و افزایش شدت پیک های پلیمر، وجود نانو ذره اکسید آهن را در ساختار پلیمری نانوکامپوزیت-های پلی تیوفن نشان داد. هدف بعدی این مطالعه بررسی ویژگی‌های جذب سطحی پلی تیوفن و نانو کامپوزیت‌های آن در حذف یون آرسنیک (III) در محیط آبی است. جذب یون آرسنیک (III) در سیستم ناپیوسته مورد بررسی قرار گرفت و شرایط بهینه pH = 6، مقدار جاذب 1/0 گرم و زمان تماس کمتر از 40 دقیقه بدست آمد. تطابق داده‌ها با خطوط ایزوترم و معادلات سینتیک نشان داد که معادله لانگمویر و سینتیک شبه درجه دوم تطابق بهتری با داده‌ها دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Adsorption of As (III) by using polythiophene/Fe2 o3 nanocomposites synthesized in aqueous/non-aqueous media.

نویسندگان [English]

  • Hossein Eisazadeh
  • asefeh hemati
چکیده [English]

Polythiophene (PTh) and its nanocomposites were successfully synthesized by the in situ chemical oxidative polymerization method in the presence of ferric chloride as an oxidant and poly (vinyl pyrrolidone) as surfactant in aqueous/non-aqueous media. The adsorbents were characterized in terms of, morphology and chemical structure by different techniques such as FT-IR, SEM and XRD. The scanning electron micrographs of polythiophene and its nanocomposites prepared in aqueous/non-aqueous media showed differences in the surface morphologies in the presence poly (vinyl pyrrolidone) and &gamma-Fe_2 O_3 nanoparticles. The FTIR spectra showed that the intensity of peaks was related to the type of surfactant. The crystalline natures of nanocomposites were determined by XRD analysis. The extra peaks in the XRD pattern of nanocomposites indicate the presence of &gamma-Fe_2 O_3 nanoparticles in the polythiophene matrix. The aim of this research was to investigate the sorption characteristic of polythiophene and its nanocomposites for the removal of As (III) from aqueous solution. The presence of surfactants leads to improve the adsorption of As (III) by changing the surface morphology of polythiophene/Fe2O3 nanocomposites. The removal percentage of As (III) was carried out by using batch process mode. The adsorption of As (III) onto polythiophene/Fe2O3 nanocomposites was found to be strongly dependent on the solution pH. The optimum conditions of sorption were found to be: contact time of 40 min, 0.1 g of adsorbent dosage and pH 6 . Among of the several conventional isotherm and kinetic models, langmuir and second-order models showed reasonable fit to the adsorption equilibrium data, respectively.

کلیدواژه‌ها [English]

  • chemical oxidative polymerization
  • Nanocomposite
  • Polythiophene
  • γ-Fe_2 O_3
  • poly (vinyl pyrrolidone)
  • As (III) removal
[1] A. Demirbas, Hazard. Mater., 157 )2008(220-229.

[2] F. Hashemi, H. Parham, J. Iranian Chem. Eng., 23 (2006) 45-52.                                                                                                                                           

[3] R. Ansari, J. Feizy, A. Delavar, E-J. Chem.,4 (2008) 853-863.                                                                                              

[4] S. Mandal, M. K. Sahu, R. K. Patel, water resour. Ind.,4 (2013)1983.                                            

[5] M. Ghorbani, M. Suleiman, H. Eisazadeh, Synth. Met., 161 (2011) 51-56.                                         

[6] R. C. Liu, Z. P. Liu, Chin. Sci. Bull.,54 (2009) 2028-2032.                                                                                                                                      

[7] H.  Bagheria, Z. Ayazib, M. Naderia,  J .Anal. Chim. Acta., 167 (2013) 1-13.

[8] R.  Khalili, F. Shabanpour, H. Eisazadeh, Adv. Polym. Technol., 33 (2014) 1-7.

[9] H. Eisazadeh, Z. Vatani, Polymer-Plastics Technol. Eng. 52 (2013) 1621–1625.                                                                                             

[10] H. Shirakawa,  T. Ito, S. Ikeda, .Polym. sci., 12 (1974) 11-20.                     

[11] S. Machila, S. Miyata,  A. Techagumpuch, Synth. Met., 31 (1989) 311-371.                                                                                                                                    

[12] R. Marchessault, P. Rioux, L. Raymond, 33 (1992) 4024-4029.

[13] A.  MacDiarmid, A. Epstein, .Synth. Met., 65 (1994) 103-116 .                                                                                                                                                       

[14] E. Sema, N. Gadegaard,  J. Phys. Chem B,  39 (2001) 9395-9405.

[15] T. Otero, H.  Grande, J. Rodriguez, J. phys. Chys Chem. B., 101(1997) 688-3697.                                                           

[16] G. Giakisikli, N. Aristidis, A. Anthemidis,  J. Anal. Chim. Acta., 789 (2013) 1-16.                                               

[17] A. Mehdinia, F. Roohib,  A. Jabbarib, .J. Chromatogr. A., 121 (2011) 4269-4274.

[18] E. Tahmasebi, Y. Yamini, M. Moradi, A. Esrafili,. J. Anal. Chim. Acta., 770 (2013) 68-74.

[19] Y. Seok Kima, S. Mo Leea, P. Govindaiaha, S. Jong Leea, S. Hwan Leea, J. Hyun Kima, I. Cheongb, Synth. Met., 175(2013) 56-61.

[20] R. Kumar, M. O. Ansari, M. A. Baraket, Chem. Eng. J., 228 (2013) 748–755.

[21] M. Roosta, M. Ghaedi, N. Shokri, A. Daneshfar, R. Sahaei, A. Asghari, Spectrochim. Acta Part A, 118 (2014) 55–65