[1] Simon, V., Ho, D. D., & Abdool Karim, Q. (2006). HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet, 368(9534), 489-504.
[3] Saleh, N. A., Elhaes, H., & Ibrahim, M. (2017). Viral Proteases and Their Inhibitors (1st ed.). Academic Press.
[5]
Soontornniyomkij, V.,
Umlauf, A.,
Chung, S. A.,
Cochran, M. L.,
Soontornniyomkij, B.,
Gouaux, B.,
Toperoff, W.,
Moore, D. J.,
Masliah, E.,
Ellis, R. J.,
Grant, I., &
Achim, C. L. (2014) HIV protease inhibitor exposure predicts cerebral small vessel disease.
AIDS, 28(9), 1297-1306.
[6]
Qureshi, A.,
Thakur, N., &
Kumar, M. (2013). HIPdb: a database of experimentally validated HIV inhibiting peptides.
PLoS One, 8, e54908.
[8]
Jia, J. M.,
Wu, C. F.,
Liu, W.,
Yu, H.,
Hao, Y.,
Zheng, J. H., &
Ji, Y., R. (2005). Antiinflammatory and analgesic activities of the tissue culture of Saussurea involucrate.
Biological and Pharmaceutical Bulletin, 28(9), 1612-1614.
[9] Khademvatan, S., Adibpour, N., Eskandari, A., Rezaee, S., Hashemitabar, M., & Rahim, F. (2013).
In silico and in vitro comparative activity of novel experimental derivatives against Leishmania major and Leishmania infantum promastigotes.
Experimental Parasitology, 135(2), 208-216.
[11] Gundala, T., R., Godugu, K., & Nallagondu, C., G. (2017). Citric Acid-catalyzed Synthesis of 2,4-Disubstituted Thiazoles from Ketones via C–Br, C–S, and C–N Bond Formations in One Pot: A Green Approach.
Journal of the Chinese Chemical Society, 64(12), 1408-1416.
[12] Rives, V. (2001). Layered Double Hydroxides: Present and Future, Nova Science Pub.
[13] Duan, X., & Evans, D. G. (2016). Layered double hydroxides, in: D.M.P. Mingos (Ed.), Structure and Bonding, Springer-Verlag Berlin Heidelberg.
[15] Dong, H., Chen, M., Rahman, S., Parekh, H. S., Cooper, H. M., & Xu, Z. P. (2014). Engineering small MgAl-layered double hydroxide nanoparticles for enhanced gene delivery. Applied Clay Science, 100, 66-75.
[16] Evans, D. G., & Duan, X. (2006). Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine.
Chemical Communications, 5(5), 485-496.
[17] Li, L., Feng, Y., Li, Y., Zhao, W., & Shi, J. (2009). Fe
3O
4 Core/Layered Double Hydroxide Shell Nanocomposite: Versatile Magnetic Matrix for Anionic Functional Materials.
Angewandte Chemie International Edition, 48(32), 5888-5892
[18] Othman, M. R., Helwani, Z., Martunus, & Fernando, W. J. N. (2009). Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Applied Organometallic Chemistry, 23(9), 335-346.
[19] Serrano-Lotina, A., Rodríguez, L., Mu˜noz, G., Martin, A. J., Folgado, M. A., & Daza, L. (2011). Biogas reforming over La-NiMgAl catalysts derived from hydrotalcite-like structure: Influence of calcination temperature. Catalysis Communications, 12(11), 961-967.
[20] Choudary, B. M., Lakshmi Kantam, M., Neeraja, V., Koteswara Rao, K., Figueras, F., & Delmotte, L. (2001). Layered double hydroxide fluoride: a novel solid base catalyst for C–C bond formation. Green Chemistry, 3(5), 257-260.
[21] Lv, W. M., Yang, L., Fan, B. B., Zhao, Y., Chen, Y. F., Lu, N. Y., & Li, R. F. (2015). Silylated MgAl LDHs intercalated with MnO2 nanowires: Highly efficient catalysts for the solvent-free aerobic oxidation of ethylbenzene. Chemical Engineering Journal, 263, 309-316.
[22] Bechara, R., D’Huysser, A., Fournier, M., Forni, L., Fornasari, G., Trifirò, F., & Vaccari, A. (2002). Synthesis and Characterization of Boron Hydrotalcite-Like Compounds as Catalyst for Gas-Phase Transposition of Cyclohexanone-Oxime. Catalysis Letters, 82, 59-67.
[23] Theiss, F. L., Ayoko, G. A., & Frost, R. L. (2016). Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Applied Surface Science, 383, 200-213.
[24] Kuwahara, Y., Tsuji, K., Ohmichi, T., Kamegawa, T., Mori, K., & Yamashita, H. (2012). Transesterifications using a hydrocalumite synthesized from waste slag: an economical and ecological route for biofuel production. Catalysis Science & Technology, 2(9), 1842-1851.
[25] Moschel, R. C., Hudgins, W. R., & Dipple, A. (1986). Reactivity effects on site selectivity in nucleoside aralkylation: a model for the factors influencing the sites of carcinogen-nucleic acid interactions. Journal of Organic Chemistry, 51(22), 4180-4185.
[26] Borrajo, A., Ranazzi, A., Pollicita, M., Bruno, R., Modesti, A., Alteri, C., Perno, C. F., Svicher, V., & Aquaro, S. (2017). Effects of Amprenavir on HIV-1 Maturation, Production and Infectivity Following Drug Withdrawal in Chronically-Infected Monocytes/Macrophages. Viruses, 9(10), 277-288.
[27] Behbahani, M. (2014). Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. International Immunopharmacology, 23(1), 262-266.
[28] Rezaei, Z., Didehvar, M. M., Mahdavi, M., Azizian, H., Hamedifar, H., Mohammed, E. H. M., Ostad, S., & Amini, M. (2019). Anticancer properties of N-alkyl-2, 4-diphenylimidazo [1, 2-a] quinoxalin-1-amine derivatives; kinase inhibitors. Bioorganic Chemistry, 90, 103055.
[29] Razzaghi-Asl, N., Sepehri, S., Ebadi, A., Miri, R., & Shahabipour, S. (2015). Effect of Biomolecular Conformation on Docking Simulation: A Case Study on a Potent HIV-1 Protease Inhibitor. Iranian Journal of Pharmaceutical Research, 14(3), 785-802.