[1] Rashidi, A.M. & Amadeh, A. (2010). Effect of Electroplating Parameters on Microstructure of Nanocrystalline Nickel Coatings, Journal of Material Science and Technology, 26, 82-86.
[2] Zolfaghari, M., Arab, A. & Asghari, A. (2019). On the morphology and corrosion behavior of Ni nanostructures electrodeposited in the presence of different surfactants, Journal of Applied Chemistry, 13, 37-44.
[3] Mohanty, U.S., Tripathy, B. C., Singh, P., Keshavarz, A.& Iglauer, S. (2019). Roles of organic and inorganic additives on the surface quality, morphology, and polarization behavior during nickel electrodeposition from various baths: a review, Journal of Applied Electrochemistry, 49, 847-871.
[4] Schmitz, E.P.S., Quinaia, S. P., Garcia, J. R., de Andrade, C.K, & Lopes, M.C. (2016). Influence of Commercial Organic Additives on the Nickel Electroplating, International Journal of Electrochemical Science, 11, 983-997.
[6] Esmaeilzadeh, S., Raeissi, K. & Ashrafizadeh, F. (1395). Effect of Deposition Current Density on Superhydrophobicity Characteristic and Corrosion Resistance of Nickel Electrodeposited Coating
Iranian Journal of Surface Science and Engineering, 27, 1-15 (in Persian).
[7] Zarebidaki, A., Aboutalebi, M. R. & Mahmoudi kohani, H. (1394). Corrosion Behavior of Electrodeposited Nickel Coatings on AZ91 Mg Alloy, Journal of Metallurgical and Materials Engineering, 26, 1-10 (in Persian).
[8] Mandich, N. V. & Baudrand, D. W. (2002). Troubleshooting Electroplating Installations: Nickel Sulfamate Plating Systems, Plating & Surface Finishing, 89, 68-77.
[9] Rose, I. & Whittington, C. (2014). Nickel plating handbook, Nickel Institute: Brussels, Belgium.
[10] Di Bari, G. A. (2000), Electrodeposition of nickel, Modern Electroplating, 5, 79-114.
[12] Pouretedal, H. R. & Keshavarz, M. H. (2004). Copper(I)-bathocuproine complex as carrier in iodide-selective electrode, Talanta, 62, 221-225.
[13] Pouretedal, H. R., Semnani, A. & Keshavarz, M. H. (2006). Cerium(III) ion-selective electrodes based on 1,4,7-trithiacyclononane, Turkish Journal of Chemistry, 30, 711-721.
[15] Saraby-Reintjes, A. & Fleischmann, M. (1984). Kinetics of electrodeposition of nickel from watts baths, Electrochimica Acta, 29, 557-566.
[16] Delaunois, F., Vitry, V. & Bonin, L. (2019). Electroless nickel plating: fundamentals to applications, CRC Press.
[18] Li, J., Pan, L., Fu, Q., Zhou, Y. & Guo, N. (2019). Wettability and corrosion behavior of a Ni coating on 304 stainless steel surface, Surface & Coatings Technology, 357, 740-747.
[21] Poroch-Seritana, M., Gutta, S., Gutta, G., Cretescub, I., Cojocarub, C. & Severina, T. (2011).
Design of experiments for statistical modeling and multi-response optimization of nickel electroplating process,
Chemical Engineering Research and Design, 89, 136-147.
[22] Wojciechowski, J., Baraniak, M., Pernak, J. & Lota, G. (2017). Nickel Coatings Electrodeposited from Watts Type Baths Containing Quaternary Ammonium Sulphate Salts, International Journal of Electrochemical Science, 12, 3350-3360.
[23] Sadiku-Agboola, O., Sadiku, E. R., Ojo, O. I., Akanji, O. L. & Biotidara, O. F. (2011). Influence of Operation Parameters on Metal Deposition in Bright Nickel-plating Process, Portugaliae Electrochimica Acta, 29, 91-100.
[24] Abd El-Halim, A., Sobahi, M. & Baghlaf, A. (1983). The role played by the anions in cadmium electroplating from some acidic baths, Surface Technology, 18, 225-232.
[25] Müller, C., Sarret, M. & Benballa, M. (2002). Complexing agents for a Zn–Ni alkaline bath, Journal of Electroanalytical Chemistry, 519, 85-92.
[26] Pouretedal, H. R. & Hosseini, M. (2010). Bleaching Kinetic and Mechanism Study of Congo Red Catalyzed by ZrO2 Nanoparticles Prepared by Using a Simple Precipitation Method , Acta Chimica Slovenica, 57, 415-423.
[27] Pouretedal, H. R. & Momenzadeh, F. (2015). Synthesis, characterization and study of photocatalytic activity of nanocomposites of oxides and sulphides of Ni(II) and Ni(III), Bulgarian Chemical Communication, 47, 59-65.
[28] Ghaziof, S. & Gao, W. (2014). Electrodeposition of single gamma phased Zn–Ni alloy coatings from additive-free acidic bath, Applied Surface Science, 311, 635-642.
[29] Khajezade, H. & Taheri, A. (2020). Synergistic inhibition effect of thionine and zinc ions on carbon steel corrosion in acidic media, Journal of Applied Chemistry, 15, 53-68.
[30] Hajiyan pour, F., Jaafarabadi, M., Behpour, M. & Jafari, Y. (2019). Investigation of corrosion protection performance of epoxy coatings modified by ZnO-Cr2O3 nanocomposites on mild steel surfaces, Journal of Applied Chemistry, 13, 45-52.