[1] Adcock, J. L., Barrow, C. J., Barnett, N. W., Conlan, X. A., Hogan, C. F., & Francis, P. S. (2011). Chemiluminescence and electrochemiluminescence detection of controlled drugs. Drug testing and analysis, 3(3), 145-160.
[2] Azad, M. A. K., Ohira, S.-I., & Toda, K. (2006). Single column trapping/separation and chemiluminescence detection for on-site measurement of methyl mercaptan and dimethyl sulfide. Analytical chemistry, 78(17), 6252-6259.
[3] Barnett, N., Hindson, B., Lewis, S., & Purcell, S. (1998). Determination of codeine, 6-methoxycodeine and thebaine using capillary electrophoresis with tris (2, 2′-bipyridyl) ruthenium (II) chemiluminescence detection. Analytical Communications, 35(10), 321-324.
[4] Bolton, E., & Richter, M. M. (2001). Chemiluminescence of Tris (2, 2'-bipyridyl) ruthenium (II): a glowing experience. Journal of Chemical Education, 78(1), 47.
[5] Cao, W., Yang, J. H., Sun, C. X., Zhang, Z. J., & Gao, Q. F. (2005). Flow‐injection–chemiluminescence method for the determination of penicillin G potassium. Luminescence: The journal of biological and chemical luminescence, 20(4‐5), 238-242.
[6] Chen, D., Wang, H., Zhang, Z., Ci, L., & Zhang, X. (2011). Chemiluminescence determination of cefotaxime sodium with flow-injection analysis of cerium (IV)–rhodamine 6G system and its application to the binding study of cefotaxime sodium to protein with on-line microdialysis sampling. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1), 553-557.
[7] Chen, G., & Huang, C. (1988). A study of the chemiluminescence of some acidic triphenylmethane dyes. Talanta, 35(8), 625-631.
[8] Chen, X., & SATo, M. (1994). High-performance liquid chromatographic determination of ascorbic acid in soft drinks and apple juice using tris (2, 2′-bipyridine) ruthenium (II) electrochemiluminescence. Analytical sciences, 11(5), 749-754.
[9] Christie, R. (2014). Colour chemistry: Royal society of chemistry.
[10] Codeine, P., Brands, A. C., ULC, H. N. Z., & Brands, C. Medicines Adverse Reactions Committee.
[11] Costin, J. W., Lewis, S. W., Purcell, S. D., Waddell, L. R., Francis, P. S., & Barnett, N. W. (2007). Rapid determination of Papaver somniferum alkaloids in process streams using monolithic column high-performance liquid chromatography with chemiluminescence detection. Analytica chimica acta, 597(1), 19-23.
[12] Cui, H., Zhang, Q., Myint, A., Ge, X., & Liu, L. (2006). Chemiluminescence of cerium (IV)–rhodamine 6G–phenolic compound system. Journal of Photochemistry and Photobiology A: Chemistry, 181(2-3), 238-245.
[13] Delouei, N. J., Mokhtari, A., & Jamali, M. R. (2017). Determination of pholcodine in syrups and human plasma using the chemiluminescence system of tris (1, 10 phenanthroline) ruthenium (II) and acidic Ce (IV). Luminescence, 32(3), 387-393.
[14] Ensafi, A. A., Hasanpour, F., Khayamian, T., Mokhtari, A., & Taei, M. (2010). Simultaneous chemiluminescence determination of thebaine and noscapine using support vector machine regression. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(2), 867-871.
[15] Francis, P. S., & Adcock, J. L. (2005). Chemiluminescence methods for the determination of ofloxacin. Analytica chimica acta, 541(1-2), 3-12.
[16] Gemba, Y., Konishi, M., Sakata, T., & Okabayashi, Y. (2004). Determination of Oxycodone and Its Metabolite, Noroxycodone, in Human Plasma by HPLC with Post‐column Chemiluminescence Detection Using Electrogenerated Tris (2, 2′‐Bipyridyl) ruthenium (III). Journal of liquid chromatography & related technologies, 27(10), 1611-1626.
[17] Gerardi, R. D., Barnett, N. W., & Lewis, S. W. (1999). Analytical applications of tris (2, 2′-bipyridyl) ruthenium (III) as a chemiluminescent reagent. Analytica chimica acta, 378(1-3), 1-41.
[18] Greenwood, P. A., Merrin, C., McCreedy, T., & Greenway, G. M. (2002). Chemiluminescence μTAS for the determination of atropine and pethidine. Talanta, 56(3), 539-545.
[19] Guha, M. (2003). The Encyclopedia of Addictive Drugs. Reference Reviews, 17(7), 50-51.
[20] Han, H.-Y., He, Z.-K., & Zeng, Y.-E. (1999). A direct chemiluminescence method for the determination of nucleic acids using Ru (phen) 32+–Ce (IV) system. Fresenius' journal of analytical chemistry, 364, 782-785.
[21] Hara, M., Waraksa, C. C., Lean, J. T., Lewis, B. A., & Mallouk, T. E. (2000). Photocatalytic water oxidation in a buffered Tris (2, 2 ‘-bipyridyl) ruthenium complex-colloidal IrO2 system. The Journal of Physical Chemistry A, 104(22), 5275-5280.
[22] He, Z., & Gao, H. (1997). Simultaneous determination of oxalic and tartaric acid with chemiluminescence detection. Analyst, 122(11), 1343-1346.
[23] Hong, D., Jung, J., Park, J., Yamada, Y., Suenobu, T., Lee, Y.-M., Fukuzumi, S. (2012). Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy & Environmental Science, 5(6), 7606-7616.
[24] Huang, Y., & Chen, Z. (2002). Chemiluminescence of chlorpromazine hydrochloride based on cerium (IV) oxidation sensitized by rhodamine 6G. Talanta, 57(5), 953-959.
[25] Karim, M. M., Lee, S. H., Lee, H. S., Bae, Z. U., & Choi, K. H. (2006). A batch chemiluminescence determination of enoxacin using a Tris-(1, 10-phenanthroline) ruthenium (II)–cerium (IV) system. Journal of Fluorescence, 16, 535-540.
[26] Knight, A. W., & Greenway, G. M. (1995). Electrogenerated chemiluminescent determination of pyruvate using tris (2, 2′-bipyridine) ruthenium (II). Analyst, 120(10), 2543-2547.
[27] Lara, F. J., García-Campaña, A. M., & Aaron, J.-J. (2010). Analytical applications of photoinduced chemiluminescence in flow systems—A review. Analytica chimica acta, 679(1-2), 17-30.
[28] Latta, K. S., Ginsberg, B., & Barkin, R. L. (2002). Meperidine: a critical review. American journal of therapeutics, 9(1), 53-68.
[29] Li, Y., Zhang, Z., Li, J., Li, H., Chen, Y., & Liu, Z. (2011). Simple, stable and sensitive electrogenerated chemiluminescence detector for high-performance liquid chromatography and its application in direct determination of multiple fluoroquinolone residues in milk. Talanta, 84(3), 690-695.
[30] Littlejohn, D. (1994). JD Ingle Jr., and SR Crouch, Spectrochemical analysis: Prentice Hall, New Jersey, 1988 (ISBN 0-13-826876-2). xv+ 590 pp. price£ 24.95. In: Elsevier.
[31] Liu, W., & Huang, Y. (2004). Cerium (IV)-based chemiluminescence of phentolamine sensitized by rhodamine 6G. Analytica chimica acta, 506(2), 183-187.
[32] Mikuška, P., & Večeřa, Z. (1998). Application of gallic acid and xanthene dyes for determination of ozone in air with a chemiluminescence aerosol detector. Analytica chimica acta, 374(2-3), 297-302.
[33] Mokhtari, A., Ghazaeian, M., Maghsoudi, M., Keyvanfard, M., & Emami, I. (2015). Simple chemiluminescence determination of ketotifen using tris (1, 10 phenanthroline) ruthenium (II)‐Ce (IV) system. Luminescence, 30(7), 1094-1100.
[34] Mokhtari, A., Jafari Delouei, N., Keyvanfard, M., & Abdolhosseini, M. (2016). Multiway analysis applied to time‐resolved chemiluminescence for simultaneous determination of paracetamol and codeine in pharmaceuticals. Luminescence, 31(6), 1267-1276.
[35] Mokhtari, A., Keyvanfard, M., & Emami, I. (2015). Simultaneous chemiluminescence determination of citric acid and oxalic acid using multi-way partial least squares regression. RSC Advances, 5(37), 29214-29221.
[36] Mokhtari, A., Keyvanfard, M., Emami, I., Delouei, N. J., Pishkhani, H. F., Ebrahimi, A., & Karimian, H. (2016). Determination of Aspirin Using Chemiluminescence System of Tris (1, 10 phenanthroline) Ruthenium (II)-Cerium (IV). Journal of the Brazilian Chemical Society, 27, 566-574.
[37] Mokhtari, A., & Rezaei, B. (2011). Chemiluminescence determination of chlorpromazine and fluphenazine in pharmaceuticals and human serum using tris (1, 10-phenanthroline) ruthenium (II). Analytical Methods, 3(4), 996-1002.
[38] Pavlov, V., Xiao, Y., Gill, R., Dishon, A., Kotler, M., & Willner, I. (2004). Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Analytical chemistry, 76(7), 2152-2156.
[39] Ram, S., & Siar, C. (2005). Chemiluminescence as a diagnostic aid in the detection of oral cancer and potentially malignant epithelial lesions. International journal of oral and maxillofacial surgery, 34(5), 521-527.
[40] Ramachander, G., Williams, F. D., & Emele, J. F. (1977). Determination of dextrorphan in plasma and evaluation of bioavailability of dextromethorphan hydrobromide in humans. Journal of pharmaceutical sciences, 66(7), 1047-1048.
[41] Ramanathan, V., & Chandra, P. (1980). Recovery of thebaine and cryptopine from Indian opium. Bull Narc, 32(2), 49-63.
[42] Rezaei, B., Khayamian, T., & Mokhtari, A. (2009). Simultaneous determination of codeine and noscapine by flow-injection chemiluminescence method using N-PLS regression. Journal of pharmaceutical and biomedical analysis, 49(2), 234-239.
[43] Rezaei, B., & Mokhtari, A. (2007). A simple and rapid flow injection chemiluminescence determination of cysteine with Ru (phen) 32+–Ce (IV) system. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(2), 359-363.
[44] Sabnis, R. W. (2007). Handbook of acid-base indicators: CRC Press.
[45] Shahraki, A. D., Jabalameli, M., & Ghaedi, S. (2012). Pain relief after cesarean section: Oral methadone vs. intramuscular pethidine. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 17(2), 143.
[46] Song, Q., Greenway, G. M., & McCreedy, T. (2001). Tris (2, 2′-bipyridine) ruthenium (II) electrogenerated chemiluminescence of alkaloid type drugs with solid phase extraction sample preparation. Analyst, 126(1), 37-40.
[47] Tsuji, A., Stanley, P. E., Kricka, L. J., Maeda, M., & Matsumoto, M. (2005). Bioluminescence And Chemiluminescence: Progress And Perspectives-Proceedings Of The 13th International Symposium.
[48] Tsunoda, M., & Imai, K. (2005). Analytical applications of peroxyoxalate chemiluminescence. Analytica chimica acta, 541(1-2), 13-23.
[49] Vitha, M. F. (2018). Spectroscopy: Principles and instrumentation: John Wiley & Sons.
[50] Wallace, W. L., & Bard, A. J. (1979). Electrogenerated chemiluminescence. 35. temperature dependence of the ECL efficiency of Ru (bpy) 2+ in acetonitrile and evidence for very high excited state yields from electron transfer reactions. J. Phys. Chem, 83, 1350-1357.
[51] Wang, C.-Y., & Huang, H.-J. (2003). Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru (bpy) 32+–tripropylamine system. Analytica chimica acta, 498(1-2), 61-68.
[52] Wang, J. P., Li, N. B., & Luo, H. Q. (2008). Chemiluminescence determination of ferulic acid by flow-injection analysis using cerium (IV) sensitized by rhodamine 6G. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(1), 204-208.
[53] Waseem, A., Yaqoob, M., & Nabi, A. (2008). Flow‐injection method for the determination of iodide/iodine using Ru (bpy) 33+–NADH chemiluminescence detection. Luminescence, 23(5), 316-320.
[54] Worsfold, P., Townshend, A., Poole, C. F., & Miró, M. (2019). Encyclopedia of analytical science: Elsevier.
[55] Xi, J., Ai, X., & He, Z. (2003). Chemiluminescence determination of barbituric acid using Ru (phen) 32+–Ce (IV) system. Talanta, 59(5), 1045-1051.
[56] Zhuang, Y., Zhang, D., & Ju, H. (2005). Sensitive determination of heroin based on electrogenerated chemiluminescence of tris (2, 2′-bipyridyl) ruthenium (II) immobilized in zeolite Y modified carbon paste electrode. Analyst, 130(4), 534-540.