[1] E. Routoula and S. V. Patwardhan., J. Environ. ) 2020). Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Sci. Technol., 54(2), 647-664.
[2] M. Ghimpusan, G. Nechifor, A.-C. Nechifor, S.-O. Dima, and P. Passeri. (2017). Case studies on the physical-chemical parameters' variation during three different purification approaches destined to treat wastewaters from food industry. J. Environ. Sci. Manag, (203), 811-816.
[3] M.-j. Kim, J.-h. Park, H.-J. Suh, and C. Lee. ( 2016). Establishment of an Analytical Method for Azorubine, an Undesignated Food Colorant in Korea. J Food Saf, 31(5), 311-318.
[4] T. M. Jawad, M. R AL-Lami, A. S. Hasan, J. A. Al-Hilifi, R. K. Mohammad, and L. Ahmed. (2021). Synergistic Effect of dark and photoreactions on the removal and photo-decolorization of azo carmosine dye (E122) as food dye using Rutile-TiO2 suspension. Egypt J Chem, 64(9), 4857-4865.
[5] T. Soltani and B.-K. Lee. (2016) Sono-synthesis of nanocrystallized BiFeO3/reduced graphene oxide composites for visible photocatalytic degradation improvement of bisphenol A. Chem. Eng., (306), 204-213.
[6] M. V. Neshin, R. S. Khoshnood, and D. S. Khoshnoud. (2021). Enhanced photocatalytic activity of Ni-doped BiFeO3 nanoparticles for degradation of bromophenol blue in aqueous solutions. React. Kinet. Mech. Catal., 134(2), 951-970.
[7] S. Mousavi, F. Shahraki, M. Aliabadi, A. Haji, F. Deuber, and C. Adlhart. (2019). Nanofiber immobilized CeO2/dendrimer nanoparticles: An efficient photocatalyst in the visible and the UV. Appl. Surf. Sci., (479), 608-618.
[8] S. M. Tichapondwa, J. Newman, and O. Kubheka. (2020). Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys Chem Earth, Parts A/B/C, (118), 102900.
[9] M. Siddique, N. M. Khan, and M. Saeed. (2019). Photocatalytic activity of bismuth ferrite nanoparticles synthesized via sol-gel route. Z Phys Chem (N F), 233(5), 595-607.
[10] X. Deng et al.. (2020). Study of structural, optical and enhanced multiferroic properties of Ni doped BFO thin films synthesized by sol-gel method. J. Alloys Compd., (831), 154857.
[11] F. Majid, S. T. Mirza, S. Riaz, and S. Naseem. (2015). Sol-gel synthesis of BiFeO3 nanoparticles. Mater. Today, Proceedings, 2(10), 5293-5297.
[12] S. Nayak et al.. (2018). Sol–gel synthesized BiFeO3–graphene nanocomposite as efficient electrode for supercapacitor application. J. Mater. Sci. Mater. Electron., 29(11), 9361-9368.
[13] C. Ponraj, G. Vinitha, and J. Daniel, J. Daniel. (2017). A review on the visible light active BiFeO3 nanostructures as suitable photocatalyst in the degradation of different textile dyes. Environ. Nanotechnol. Monit. Manag., (7), 110-120.
[14] L. Esmaeili and A. Gholizadeh. (2019). Effect of temperature and concentration of bismuth nitrate mole on structural, magnetic and photocatalytic properties of bismuth ferrite. J. Iran. Chem. Soc., (26), 1013-1026.
[15] S. Mohamadnejad, A. Ayati, A. Ahmadpor, H. Karimi Meleh. (2020). Photo-catalysis degradation of methyl orange as pollutant dye using dioxide magnetic Fe3O4/Al2O3/TiO2 nanostructure. Applied Chemistry, 15(54), 337-350. (in Persian)
[16] R. S. Sprick et al.. (2015). Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc., 137(9), 3265-3270.
[18] S. Pirouzi, B. Tanhayi, A. Ayati, M. Niknam Shahrak, M. Saei Moghadam. (2021). Investigation of photo catalytic properties of ZIF-8 emitted based on titanium dioxide nano tubes in removal of aqueous pollutants. Applied Chemistry, 17(62), 99-114. (in Persian)
[19] M. Feilizadeh, F. Attar, and N. Mahinpey. (2019). Hydrogen peroxide‐assisted photocatalysis under solar light irradiation: Interpretation of interaction effects between an active photocatalyst and H2O2. Can J Chem Eng, 7(97), 2009-2014.
[20] S. Dhanya, S. G. Nair, J. Satapathy, and N. P. Kumar. ( 2019). Structural and spectroscopic characterization of bismuth-ferrites. AIP Conf. Proc. 2166(1), 020017.
[21] S. Kossar, R. Amiruddin, and A. Rasool. (2021). Study on thickness-dependence characteristics of bismuth ferrite (BFO) for ultraviolet (UV) photodetector application. Micro Nano Syst. Lett., 1(9), 1-10.
[22] S. Nandy and C. Sudakar. (2019). Influence of chemical solution growth and vacuum annealing on the properties of (100) pseudocubic oriented BiFeO3 thin films. J. Appl. Phys., 126(13), 135303.
[23] A. Singh, Z. R. Khan, P. Vilarinho, V. Gupta, and R. Katiyar. (2014). Influence of thickness on optical and structural properties of BiFeO3 thin films: PLD grown. Mater. Res. Bull., (49), 531-536.
[24] M. Kumar, K. Yadav, and G. D. Varma. (2008). Large magnetization and weak polarization in sol–gel derived BiFeO3 ceramics. Mater. Lett., 9(62), 1159-1161.
[25] M. Nazmiyan, R. S. Khoshnood and D. S. Khoshnoud. (2015). Structural, microstructural and magnetic investigation of bismuth ferrite nanoparticles doped with lanthanum and yttrium. Applied Chemistry, 10(34), 83-90. (in Persian)
[26] S. Shahbazkhany, M. Salehi, Z. Salarvand and M. M. Kamazani. (2022). Photocatalytic oxidative desulfurization of dibenzothiophene solution and real sample of fuel by using Mn-doped ZnO under visible irradiation. Pet. Sci. Technol., (11), 1-20.
[27] R. S. Khoshnood and D. S. Khoshnoud. (2019). Structural, magnetic, and photocatalytic properties in Bi0.83−xLa0.17YxFeO3 nanoparticles. Appl. Phys. A, (125), 1-10.
[28] Gh. Mansouri, M. Mansouri. (2019). Investigating the photocatalytic activity of TiO2-ZnO immobilized on ZSM-5 zeolite in the removal of methyl orange dye. Applied Chemistry, 15(56), 241-256. (in Persian)