[1] Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267(1), 129205-129210.
[2] Hu, T., Chen, R., Wang, Q., He, C., & Liu, S. (2021). Recent advances and applications of molecularly imprinted polymers in solid‐phase extraction for real sample analysis. Journal of Separation Science, 44(1), 274-309..
[3] Ashrafi, M., Bagherian, G., Arab Chamjangali, M., & Goudarzi, N. (2018). Removal of brilliant green and crystal violet from mono-and bi-component aqueous solutions using NaOH-modified walnut shell. Analytical and Bioanalytical Chemistry Research, 5(1), 95-114.
[4] Safinejad, A., Goudarzi, N., Chamjangali, M. A., & Bagherian, G. (2017). Effective simultaneous removal of Pb (II) and Cd (II) ions by a new magnetic zeolite prepared from stem sweep. Materials Research Express, 4(11), 116104.
[5] Mehmandost, N., Goudarzi, N., Arab Chamjangali, M., & Bagherian, G. (2022). Removal of methylene blue and crystal violet in binary aqueous solution by magnetic Terminalia catappa kernel shell biosorbent using Box–Behnken design. Journal of the Iranian Chemical Society, 19(9), 3769-3781.
[6] Mehmandost, N., Goudarzi, N., Chamjangali, M. A., & Bagherian, G. (2022). Application of random forest for modeling batch and continuous fixed-bed removal of crystal violet from aqueous solutions using Gypsophila aretioides stem-based biosorbent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 265, 120292.
[7] Augusto, F., Hantao, L. W., Mogollón, N. G., & Braga, S. C. (2013). New materials and trends in sorbents for solid-phase extraction. TrAC Trends in Analytical Chemistry, 43, 14-23.
[8] Kou, S. G., Peters, L. M., & Mucalo, M. R. (2021). Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules, 169, 85-94.
[9] Yao, S., Liu, Z., & Shi, Z. (2014). Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. Journal of Environmental Health Science and Engineering, 12, 1-8.
[10] Srivastava, V., Weng, C. H., Singh, V. K., & Sharma, Y. C. (2011). Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. Journal of chemical & engineering data, 56(4), 1414-1422.
[11] Rahimizadeh, Z., Hamidian, A. H., Hosseini, S. V., (2017). Removing Heavy Metals from Aqueous Solutions Using Chitosan – Clay Nanocomposites. Journal of Natural Environment. 69(3), 669-679. (In Persian)
[12] S. Zavareh, S. Parvizi, (2016). A nanoadsorbent based on Cu(II)- modified chitosan for removal of phosphate from natural water, 1st Iranian applied chemistry seminar, University of Tabriz. Iran.
[13] Rouniasi, N., Monavari, S. M., Abdoli, M. A., Baghdadi, M., & Karbasi, A. (2018). Removal of heavy metals of cadmium and lead from aqueous solutions using graphene oxide nanosheets process optimization by response surface methodology. Iranian Journal of Health and Environment, 11(2), 197-214.
[14] Ramutshatsha-Makhwedzha, D., Mbaya, R., & Mavhungu, M. L. (2022). Application of activated carbon banana peel coated with Al2O3-chitosan for the adsorptive removal of lead and cadmium from wastewater. Materials, 15(3), 860.
[15] Moussout, H., Aazza, M., & Ahlafi, H. (2020). Thermal degradation characteristics of chitin, chitosan, Al2O3/chitosan, and benonite/chitosan nanocomposites. In Handbook of Chitin and Chitosan (pp. 139-174). Elsevier.
[16] Mazzieri, V., Coloma-Pascual, F., Arcoya, A., L’Argentière, P. C., & Fıgoli, N. S. (2003). XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Applied Surface Science, 210(3-4), 222-230. [17] Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica acta, 396(1-2), 153-166.
[18] Li, L., Iqbal, J., Zhu, Y., Wang, F., Zhang, F., Chen, W., ... & Du, Y. (2020). Chitosan/Al2O3-HA nanocomposite beads for efficient removal of estradiol and chrysoidin from aqueous solution. International journal of biological macromolecules, 145, 686-693.
[19] Shete, A. S., Yadav, V. B., Sakhare, S. S., Patil, S. B., Sajane, S. J., Yadav, A. V., & Doijad, R. C. (2015). Enhancement of solubility and dissolution rate of indomethacin by chitosan based solid dispersion technique. Journal of Current Pharma Research, 5(2), 1463.
[20] Tanhaei, B., Ayati, A., Lahtinen, M., & Sillanpää, M. (2015). Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl Orange adsorption. Chemical Engineering Journal, 259, 1-10.
[21] Yahya, M. Z. A., Harun, M. K., Ali, A. M. M., Mohammat, M. F., Hanafiah, M. A. K. M., Ibrahim, S. C., ... & Latif, F. (2006). XRD and surface morphology studies on chitosan-based film electrolytes. Journal of applied sciences, 6(15), 3150-3154.
[22] Shang, Z., Zhang, L., Zhao, X., Liu, S., & Li, D. (2019). Removal of Pb (II), Cd (II) and Hg (II) from aqueous solution by mercapto-modified coal gangue. Journal of environmental management, 231, 391-396.
[23] Fu, W., & Huang, Z. (2018). Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu (II), Cd (II), Pb (II), and Hg (II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere, 209, 449-456.
[24] Denizli, A., Özkan, G., & Arica, M. Y. (2000). Preparation and characterization of magnetic polymethylmethacrylate microbeads carrying ethylene diamine for removal of Cu (II), Cd (II), Pb (II), and Hg (II) from aqueous solutions. Journal of applied polymer science, 78(1), 81-89.
[25] Henriques, B., Rocha, L. S., Lopes, C. B., Figueira, P., Duarte, A. C., Vale, C., ... & Pereira, E. (2017). A macroalgae-based biotechnology for water remediation: simultaneous removal of Cd, Pb and Hg by living Ulva lactuca. Journal of environmental management, 191, 275-289.
[26] Guo, X., Du, B., Wei, Q., Yang, J., Hu, L., Yan, L., & Xu, W. (2014). Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. Journal of hazardous materials, 278, 211-220.