[1] Li, X., Bai, H., Yang, Y., Yoon, J., Wang, S., & Zhang, X. (2019). Supramolecular antibacterial materials for combatting antibiotic resistance. Advanced Materials, 31(5), 1805092.
[2] Mohammadpour, M., Pourahmad, A., & Asadpour, L. (2018). Synthesis, characterization and antibacterial property of Ag2O/Large Mordenite nanocomposite. Applied Chemistry, 13(47), 301-312. (in persian)
[3] Ang, J. Y., Ezike, E., & Asmar, B. I. (2004). Antibacterial resistance. The Indian Journal of Pediatrics, 71, 229-239.
[4] Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52(6), 1636-1653.
[5] Rizzello, L., & Pompa, P. P. (2014). Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews, 43(5), 1501-1518.
[6] Mousavi-Kamazani, M. (2019). The effect of silver nanoparticles on antimicrobial activity of Syrian rue alcoholic Extract against Escherichia coli bacteria. Applied Chemistry, 14(51), 277-286. (in persian)
[7] Maleki, A., Shahbazi, M. A., Alinezhad, V., & Santos, H. A. (2020). The progress and prospect of zeolitic imidazolate frameworks in cancer therapy, antibacterial activity, and biomineralization. Advanced healthcare materials, 9(12), 2000248.
[8] Zhang, Y., Wang, F., Ju, E., Liu, Z., Chen, Z., Ren, J., & Qu, X. (2016). Metal‐organic‐framework‐based vaccine platforms for enhanced systemic immune and memory response. Advanced Functional Materials, 26(35), 6454-6461.
[9] Sohrabnezhad, S., & Esfandiyari Takas, M. (2018). Synthesis and Characterization of CuO nanoparticles in porous clay heterostructure and study of its antibacterial properties. Applied Chemistry, 13(47), 131-144.
[10] de Oliveira, S. A., da Silva, B. C., Riegel-Vidotti, I. C., Urbano, A., de Sousa Faria-Tischer, P. C., & Tischer, C. A. (2017). Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. International journal of biological macromolecules, 97, 642-653.
[11] Ravinayagam, V., & Rehman, S. (2020). Zeolitic imidazolate framework-8 (ZIF-8) doped TiZSM-5 and Mesoporous carbon for antibacterial characterization. Saudi journal of biological sciences, 27(7), 1726-1736.
[12] Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M., & Yaghi, O. M. (2008). High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319(5865), 939-943.
[13] Carneiro, J., Döll-Boscardin, P. M., Fiorin, B. C., Nadal, J. M., Farago, P. V., & Paula, J. P. D. (2016). Development and characterization of hyaluronic acid-lysine nanoparticles with potential as innovative dermal filling. Brazilian Journal of Pharmaceutical Sciences, 52, 645-651.
[14] Cravillon, J., Münzer, S., Lohmeier, S. J., Feldhoff, A., Huber, K., & Wiebcke, M. (2009). Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chemistry of Materials, 21(8), 1410-1412.
[15] Makhetha, T. A., Ray, S. C., & Moutloali, R. M. (2020). Zeolitic imidazolate framework-8-encapsulated nanoparticle of ag/cu composites supported on graphene oxide: Synthesis and antibacterial activity. ACS omega, 5(17), 9626-9640.
[16] Au-Duong, A. N., & Lee, C. K. (2017). Iodine-loaded metal organic framework as growth-triggered antimicrobial agent. Materials Science and Engineering: C, 76, 477-482.
[17] Chowdhuri, A. R., Das, B., Kumar, A., Tripathy, S., Roy, S., & Sahu, S. K. (2017). One-pot synthesis of multifunctional nanoscale metal-organic frameworks as an effective antibacterial agent against multidrug-resistant Staphylococcus aureus. Nanotechnology, 28(9), 095102.
[18] Soomro, N. A., Wu, Q., Amur, S. A., Liang, H., Rahman, A. U., Yuan, Q., & Wei, Y. (2019). Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent. Colloids and Surfaces B: Biointerfaces, 182, 110364.
[19] Dutta, T., Bagchi, D., & Pal, S. K. (2018). Bimetallic zeolitic imidazolate framework as an active excipient of curcumin under physiological condition. Biomedical Physics & Engineering Express, 4(5), 055004.