[1] Hassiotis, N., Liaropoulos, I., Petropoulos, G., Koutsomichalis, A., & Vaxevanidis, N. (2008). Corrosion behaviour of EDMed surfaces of a tool steel. Proceedings of the 3rd International Conference on Manufacturing Engineering, 175-184.
[2] Chemezov, D., Smirnova, L., & Bogomolova, E. (2018). Metal mold casting of cast iron and aluminium pistons. Theoretical & Applied Science, 61(05), 132-141.
[3] Alimohammady, M., & Jahangiri, M. (2017). Synthesis of MnO2 nanowires adsorbent for gold recovery from electroplating wastewater using Taguchi method. Applied Chemistry, 11(41), 75-82.
[4] Steffens, H. D., & Mack, M. (1990). Plasma spraying as an advanced tool in surface engineering. Pure and Applied Chemistry, 62(9), 1801-1808.
[5] Zolfaghari, M., Arab, A., & Asghari, A. (2019). On the morphology and corrosion behavior of Ni nanostructures electrodeposited in the presence of different surfactants. Applied Chemistry, 13(49) (2019) 37-44.
[6] Shihab, S. K., A. Khan, Z. A., Mohammad, A., & Siddiquee, A. N. (2014). A review of turning of hard steels used in bearing and automotive applications. Production & Manufacturing Research, 2(1), 24-49.
[7] Park, K. S., & Kim, S. H. (1998). Artificial intelligence approaches to determination of CNC machining parameters in manufacturing: a review. Artificial Intelligence in Engineering, 12(1-2), 127-134.
[8] Sharma, R. D., Singh, R., & Singh, M. (2012). Study of electro-chemical machining process for drilling hole. International Journal of Engineering Research & Technology, 1(10), (2012) 1-5.
[9] Kuo, C. G., Hsu, C. Y., Chen, J. H., & Lee, P. W. (2017). Discharge current effect on machining characteristics and mechanical properties of aluminum alloy 6061 workpiece produced by electric discharging machining process. Advances in Mechanical Engineering, 9(11), 1-8.
[10] McGeough, J. A. (1988). Advanced Methods of Machining, Springer Science & Business Media (1988).
[11] Yan, X., Zhang, S., Li, J., & Wang, G. (2015). Electrochemical corrosion resistance of AISI H13 steelm machined by electro discharge machiningInt. International Manufacturing Science and Engineering Conference, 1, 8-12.
[12] Cusanelli, G., Hessler-Wyser, A., Bobard, F., Demellayer, R., Perez, R., & Flükiger, R. (2004). Journal of Materials Processing Technology, 149(1-3), 289-795.
[13] Hajiyanpour, F., Rajabi Jaafarabadi, M., Behpour, & M. Jafari. Y. (2019). Investigation of corrosion protection performance of epoxy coatings modified by ZnO-Cr2O3 nanocomposites on mild steel surfaces. Journal of Applied Chemistry, 13(49) 45-52.
[14] Tai, T., & Lu, S. (2009). Improving the fatigue life of electro-discharge-machined SDK11 tool steel via the suppression of surface cracks. International Journal of Fatigue, 31(3), 433-438.
[15] Hasçalık, A., & Çaydaş, U. (2007). Electrical discharge machining of titanium alloy (Ti–6Al–4V) Applied Surface Science. 253(22), 9007-9016.
[16] Arooj, S., Shah, M., Sadiq, S., Jaffery, S. H. I., & Khushnood, S. (2014). Effect of current in the EDM machining of aluminum 6061 T6 and its effect on the surface morphology. Arabian Journal for Science and Engineering,. 39, 4187-4199.
[17] Murray, J., Walker, J., & Clare, A. (2014). Nanostructures in austenitic steel after EDM and pulsed electron beam irradiation. Surface and Coatings Technology, 259(C), 465-472.
[18] Syed, K. H., & Palaniyandi, K. (2012). Performance of electrical discharge machining using aluminum Powder suspended distilled water. Turk. J. Eng. Environ. Sci., 36 (3), 195–207.
[19] Tsai, H. C., Yan, B. H., & Huang,.F. Y. (2003). EDM performance of Cr/Cu-based composite electrodes. International Journal of Machine Tools and Manufacture, 43(3), 245-252.
[20] A. Ntasi, W. D. Mueller, G. Eliades, & S. Zinelis, (2010). The effect of Electro discharge machining (EDM) on the corrosion resistance of dental alloys. Dental Materials, 26(12), e237-e245.
[21] Arunachalam, S. R., Dorman, S. E. G. , Buckley, R. T., Conrad, N. A., & Fawaz, S. A. (2018). Effect of electrical discharge machining on corrosion and corrosion fatigue behavior of aluminum alloys. International Journal of Fatigue, 111, 44-53.
[22] Sidhom, H., Ghanem, F., Amadou, T., Gonzalez, G., & Braham, C. (2013). Effect of electro discharge machining (EDM) on the AISI316L SS white layer microstructure and corrosion resistance. The International Journal of Advanced Manufacturing Technology, 65, 141-153.
[23] Tang, J., Li, J., Wang, H., Wang, Y., & Chen, G. (2019). In-situ monitoring and analysis of the pitting corrosion of carbon steel by acoustic emission. Applied Sciences, 9(4), 706-724.
[24] Gaikwad, A., Tiwari, A., Kumar, A., & Singh, D. (2014). Effect of EDM parameters in obtaining maximum MRR and minimum EWR by machining SS 316 using copper electrode. International Journal of Mechanical Engineering and Technology, 5(6), 101-109.
[25] Oguzie, E. E., Li, J., Liu, Y., Chen, D., Li, Y., Yang, K., & Wang, F. (2010). Electrochemical corrosion behavior of novel Cu-containing antimicrobial austenitic and ferritic stainless steels in chloride media. Journal of Materials Science, 45, 5902-5909.
[26] Ujiro, T., Satoh, S., Staehle, R. W., & Smyrl, W. H. (2001). Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media. Corrosion Science, 43(11), 2185-2200.
[27] Sourisseau, T., Chauveau, E., & Baroux, B. (2005). Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media. Corrosion Science, 47(5), 1097-1117.
[28] E. Lizlovs, (1966). Effects of Mo, Cu, Si and P on anodic behavior of 17Cr Steels. Corrosion Science, 22(11), 297-308.
[29] Jang, Y.-W., Hong, J.-H., & Kim, J.-G. (2009). Effects of copper on the corrosion properties of low-alloy steel in an acid-chloride environment. Metals and Materials International, 15, 623-629.
[30] Fontana, M. G., Greene, N. D. (2018). Corrosion Engineering, 2nd ed., McGraw-hill.
[31] Fuller, J. E. (1991). The EDM Surface: Topography, Chemistry, and Metallurgy, EG and G Rocky Flats, Inc., Golden, CO (United States).