[1] Dollery, C., (1999). Therapeutic Drugs, 2ed. Churchill Livingstone, UK.
[2] Kearney, M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J., (2005). Global burden of hypertension: analysis of worldwide, Lancet. 365, 217-223.
[3] Murillo Pulgarı́n, J. A., Alañón Molina A., & Pérez-Olivares Nieto, G., (2004). Determination of hydrochlorothiazide in pharmaceutical preparations by time resolved chemiluminescence, Analytica Chimica Acta, 518, 37-43
[4] Liu, F., Xua, Y., Gaob, S., Zhang, J., & Guo, Q., (2007). Determination of hydrochlorothiazide in human plasma by liquid chromatography/tandem mass spectrometry. Journal Pharmaceutical and Biomedical Analysis, 44, 1187- 1191.
[5] Baing, M. M., Vaidya, V. V., Sane, R. T., Menon, S. N., & Dalvi K., (2006). Simultaneous RP-LC determination of losartan potassium, ramipril, and hydrochlorothiazide in pharmaceutical preparations. Chromatographia, 64, 293-296.
[6] Ramakrishna, N. V. S., Vishwottam, K. N., Manoj, S., Koteshwara, M., Wishu S., & Varma, D. P., (2005). Sensitive liquid chromatography-tandem mass spectrometry method for quantification of hydrochlorothiazide in human plasma, Biomedical Chromatography, 19, 751-760.
[7] Huang, T., He, Z., Yang, B., Shao, L., Zheng, X., & Duan, G., (2006). Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution, Journal of Pharmceutical and Biomedical Analysis, 41, 644-648.
[8] Erk, N. (2002). Simultaneous determination of fosinopril and hydrochlorothiazide in pharmaceutical formulations by spectrophotometric methods. Journal of Pharmceutical and Biomedical Analysis, 27, 901-912
[9] United States Pharmacopoeia (2009) United States Pharmacopoeial Convention. Rockville.
[10] Tian, F., Li, H,. Li, M., Li, C., Lei, Y., & Yang, B., (2017). Tantalum electrode coated with graphene nanowalls for simultaneous voltammetric determination of dopamine, uric acid, L-tyrosine, and hydrochlorothiazide, Microchimica Acta. 184, 1611–1619.
[11] Beitollahi, H., & Ghorbani, F., (2013). Benzoylferrocene-modified carbon nanotubes paste electrode as a voltammetric sensor for determination of hydrochlorothiazide in pharmaceutical and biological samples, Ionics. 19, 1673–1679.
[12] Eisele, A. P. P., Mansano, G. R., Oliveira, F. M. D., Casarin, J., Tarley, C. R. T., & Sartori, E. R., (2014). Simultaneous determination of hydrochlorothiazide and valsartan in combined dosage forms: Electroanalytical performance of cathodically pretreated borondoped diamond electrode, Journal of Electroanalytical Chemistry 732, 46–52.
[13] Absalan, G., Akhond, M., Karimi, R., & Ramezani, A. M., (2018). Simultaneous determination of captopril and hydrochlorothiazide by using a carbon ionic liquid electrode modified with copper hydroxide nanoparticles, Microchimica Acta, 185, 97-104.
[14] Beitollahi, H., Hamzavi, M., & Torkzadeh-Mahani, M., (2015). Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheets paste electrode, Materials Science and engineering C. 52, 297–305.
[15] Purushothama, H. T., & Arthoba Nayaka Y., (2019). Pencil graphite electrode based electrochemical system for the investigation of antihypertensive drug hydrochlorothiazide: An electrochemical study, Chemical Physics Letters, 734, 136718- 136726.
[16]
Opallo, M., & Lesniewski,
A., (2011). A review on electrodes modified with ionic liquids,
Journal of
Electroanalytical Chemistry, 15,
2-16.
[17] Mohammadi, N., Najafi, M. & Bahrami Adeh, N., (2017). Highly defective mesoporous carbon – ionic liquid paste electrode as sensitive voltammetric sensor for determination of chlorogenic acid in herbal extracts, Sensor and Actuators. B Chem., 243, 838-846.
[18] Taei,
M., Abedi F., (2017). Application of tin oxide- inverse spinel zinc stannate nanocomposite modified carbon paste electrode for the voltammetric determination of pyridium in pharmaceutical and biological samples,
Applied Chemistry, 12(42), 35-52. (in Persian)
[19] Abolhasani, J., Samadi, A., Ghorbani -Kalhor, E., & Serrpoush Hamid, N., (2014). Colorimetric Determination of Thioamide Drugs Based on the Surface Plasmon Resonance Band of Colloidal Silver Nanoparticles, Applied Chemistry, 8 (29) 25-30. (in Persian)
[20] Naghian, E., & Najafi, M., (2018). Carbon paste electrodes modified with SnO2/CuS, SnO2/SnS and Cu@SnO2/SnS nanocomposites as voltammetric sensors for paracetamol and hydroquinone, Microchimimica Acta, 185, 406-413.
[21] Mousavi, S.-F., Alimoradi, M., Shirmardi, A., Zare‑Shahabad, V,. (2023). Synthesis and characterization of Co-Zeolite nanocomposite: electrocatalytic oxidation of methionine, Applied Chemistry, 17(65), 81-90. (in Persian)
[22] Sharma, A., Ahmed, A., Singh, A., Oruganti, S., Khosla, K. A., & Arya, S. (2021). Recent advances in tin oxide nanomaterials as electrochemical / chemiresistive sensors, Journal of the Electrochemal Society, 168, 027505- 027520.
[23] Sun,W., Wang, X., Wang,Y., Ju, X., Xu, L., Li, G., & Sun, Z,. (2013). Application of graphene–SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine, Electrochimica Acta, 87, 317–322.
[24] Karthika, A., Ramasamy Raja, V., Karuppasamy, P., Suganthi, A., & Rajarajan, M., (2020). A novel electrochemical sensor for determination of hydroquinone in water using FeWO4/SnO2 nanocomposite immobilized modified glassy carbon electrode, Journal of Electroanalytical Chemistry, 13, 4065-4081.
[25] Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S. G., Neri, G., & Sekar, C., (2016). Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO
2 nanoparticles modified glassy carbon electrode.
Journal of Electroanalytical Chemistry, 770, 23-32.
[26] Das, S., & Jayaraman, V., (2014). SnO2: a comprehensive review on structures and gas sensors, Progress in Materials Science , 66, 112–255.
[27] Varshney, B., Siddiqui, M. J., Hakeem Anwer, A., Zain Khan, M., Ahmed, F., Aljaafari, A., Hammud, H. H., & Azam, A. (2020). Synthesis of mesoporous SnO2/NiO nanocomposite using modified sol–gel method and its electrochemical performance as electrode material for supercapacitors, Scientific reports, 10, 11032-11044.
[28]
Hassan,
M. F., Rahman,
M. M., Guo,
Z., Chen, Z., & Liu,
H., (2010). SnO
2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries,
Journal of Material. Chemistry, 20
, 9707-9712.
[29] Bai, S., Liu, J., Guo, J., Luo, R., Li, D., Song, Y., Liu,
C. C., & Chen, A., (2017). Facile preparation of SnO
2/NiO composites and enhancement of sensing performance to NO
2,
Sensor and Actuators B Chem.,
249, 22-29.
[30] Bard, A., Faulkner, J. L., (2001). Electrochemical methods fundamentals and application, 2nd edition. (John Willey & Sons, New York.
[31] Santos, M. C. G., Tarley, C. R. T., DellAntonio, L. H., Sartori, E. R., (2013). Evaluation of boron-doped diamond electrode for simultaneous voltammetric determination of hydrochlorothiazide and losartan in pharmaceutical formulations,
Sensor and Actuators B Chem.,
188, 263-270.
[32] Antoniadou, S., Jannakoudakis, A. D., & Theodoridou, E., (1989). Electrocatalytic reactions on carbon fibre electrodes modified by hemine II. Electro-oxidation of hydrazine, Synthetic Metals, 30 295-304.