[1] Mallat, T., & Baiker, A. (2004). Oxidation of alcohols with molecular oxygen on solid catalysts. Chemical reviews, 104(6), 3037-3058.
[2] Najafishirtari, S., Friedel Ortega, K., Douthwaite, M., Pattisson, S., Hutchings, G. J., Bondue, C. J., ... & Behrens, M. (2021). A perspective on heterogeneous catalysts for the selective oxidation of alcohols. Chemistry–A European Journal, 27(68), 16809-16833.
[3] Targhan, H., Evans, P., & Bahrami, K. (2021). A review of the role of hydrogen peroxide in organic transformations. Journal of Industrial and Engineering Chemistry, 104, 295-332.
[4] Kupwade, R. V. (2019). A concise review on synthesis of sulfoxides and sulfones with special reference to oxidation of sulfides. J. Chem. Rev, 1, 99-113.
[5] Tong, Q. L., Fan, Z. F., Yang, J. W., Li, Q., Chen, Y. X., Cheng, M. S., & Liu, Y. (2019). The selective oxidation of sulfides to sulfoxides or sulfones with hydrogen peroxide catalyzed by a dendritic phosphomolybdate hybrid. Catalysts, 9(10), 791.
[6] M Heravi, M., Ghalavand, N., & Hashemi, E. (2020). Hydrogen peroxide as a green oxidant for the selective catalytic oxidation of benzylic and heterocyclic alcohols in different media: an overview. Chemistry, 2(1), 101-178.
[7] Noyori, R., Aoki, M., & Sato, K. (2003). Green oxidation with aqueous hydrogen peroxide. Chemical Communications, (16), 1977-1986.
[8] Védrine, J. C. (2019). Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. ChemSusChem, 12(3), 577-588.
[9] Valange, S., & Védrine, J. C. (2018). General and prospective views on oxidation reactions in heterogeneous catalysis. Catalysts, 8(10), 483.
[10] Huang, A., He, Y., Zhou, Y., Zhou, Y., Yang, Y., Zhang, J., ... & Yang, J. (2019). A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. Journal of Materials Science, 54, 949-973.
[11] Bezaatpour, A., Bozari, N., & Khatami, S. (2019). Green oxidation of sulfides by dioxide molybdenum (VI) schiff base anchored on Fe3O4 nanoparticles in solvent-free condition. Applied Chemistry, 14(50), 55-70.
[12] Peterson, B. M., Herried, M. E., Neve, R. L., & McGaff, R. W. (2014). Oxidation of primary and secondary benzylic alcohols with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by a “helmet” phthalocyaninato iron complex in the absence of added organic solvent. Dalton Transactions, 43(48), 17899-17903.
[13] Neve, R. L., Eidenschink, M. C., Guzei, I. A., Peterson, B. M., Vang, G. M., & McGaff, R. W. (2016). Homogeneous catalytic oxidation of unactivated primary and secondary alcohols employing a versatile “Helmet” phthalocyaninato iron complex catalyst without added organic solvent. ChemistrySelect, 1(16), 5182-5186.
[14] Tan, P., Kwong, H. K., & Lau, T. C. (2015). Catalytic oxidation of water and alcohols by a robust iron (III) complex bearing a cross-bridged cyclam ligand. Chemical Communications, 51(61), 12189-12192.
[15] Rana, J., Sahoo, S. T., & Daw, P. (2021). Homogeneous first-row transition metal catalyst for sustainable hydrogen production and organic transformation from methanol, formic acid, and bio-alcohols. Tetrahedron, 99, 132473.
[16] Geng, L., Zhang, X., Zhang, W., Jia, M., & Liu, G. (2014). Highly dispersed iron oxides on mesoporous carbon for selective oxidation of benzyl alcohol with molecular oxygen. Chemical Communications, 50(22), 2965-2967.
[17] Sahu, D., Silva, A. R., & Das, P. (2015). A novel iron (III)-based heterogeneous catalyst for aqueous oxidation of alcohols using molecular oxygen. RSC advances, 5(96), 78553-78560.
[18] Parmeggiani, C., Matassini, C., & Cardona, F. (2017). A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports. Green Chemistry, 19(9), 2030-2050.
[19] Cheng, W., Jiang, Y., Li, X., Li, Y., Xu, X., Lin, K., & Wang, Y. (2016). Fabrication and application of magnetic nanoreactor with multiple ultrasmall cores and mesoporous shell in Fenton-like oxidation. Microporous and Mesoporous Materials, 219, 10-18.
[20] Geng, L., Zheng, B., Wang, X., Zhang, W., Wu, S., Jia, M., ... & Liu, G. (2016). Fe3O4 nanoparticles anchored on carbon serve the dual role of catalyst and magnetically recoverable entity in the aerobic oxidation of alcohols. ChemCatChem, 8(4), 805-811.
[21] Pal, N., & Bhaumik, A. (2015). Mesoporous materials: versatile supports in heterogeneous catalysis for liquid phase catalytic transformations. RSC Adv, 5, 24363–24391.
[22] Najafishirtari, S., Friedel Ortega, K., Douthwaite, M., Pattisson, S., Hutchings, G. J., Bondue, C. J., ... & Behrens, M. (2021). A perspective on heterogeneous catalysts for the selective oxidation of alcohols. Chemistry–A European Journal, 27(68), 16809-16833.
[23] Balali, M., Keypour, H., Bagherzadeh, M., & Alsadat Mousavi, N. (2019). Synthesis of schiff-base molybdenum complex supported on magnetic nanoparticles Fe3O4@ SiO2 and their application as recyclable catalyst in oxidation of sulfides to sulfoxides. Applied Chemistry, 14(50), 181-192.
[24] Kargar, H., & Keshanizadeh, N. (2018). Biomimetic oxidation of sulfides with sodium periodate catalyzed by multi-wall carbon nanotubes supported Mn porphyrin. Applied Chemistry, 13(46), 281-294.
[25] Lin, Y. S., & Haynes, C. L. (2009). Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles. Chemistry of Materials, 21(17), 3979-3986.
[26] Deng, Y., Cai, Y., Sun, Z., Liu, J., Liu, C., Wei, J., ... & Zhao, D. (2010). Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. Journal of the American Chemical Society, 132(24), 8466-8473.
[27] Jin, X., Zhang, K., Sun, J., Wang, J., Dong, Z., & Li, R. (2012). Magnetite nanoparticles immobilized Salen Pd (II) as a green catalyst for Suzuki reaction. Catalysis Communications, 26, 199-203.
[28] Wang, Y. M., Wu, Z. Y., Shi, L. Y., & Zhu, J. H. (2005). Rapid functionalization of mesoporous materials: directly dispersing metal oxides into as‐prepared SBA‐15 occluded with template. Advanced Materials, 17(3), 323-327.
[29] Bardajee, G. R., Malakooti, R., Jami, F., Parsaei, Z., & Atashin, H. (2012). Covalent anchoring of copper-Schiff base complex into SBA-15 as a heterogeneous catalyst for the synthesis of pyridopyrazine and quinoxaline derivatives. Catalysis Communications, 27, 49-53.
[30] Bardajee, G. R., Malakooti, R., Abtin, I., & Atashin, H. (2013). Palladium Schiff-base complex loaded SBA-15 as a novel nanocatalyst for the synthesis of 2, 3-disubstituted quinoxalines and pyridopyrazine derivatives. Microporous and Mesoporous Materials, 169, 67-74.
[31] Oliveira, P., Machado, A., Ramos, A. M., Fonseca, I. M., Braz Fernandes, F. M., Botelho do Rego, A. M., & Vital, J. (2007). A new and easy method for anchoring manganese salen on MCM-41. Catalysis letters, 114, 192-197.