[1] Huang, D., Lu, J., Li, S., Luo, Y., Zhao, C., Hu, B., ... & Shen, Y. (2014). Fabrication of cobalt porphyrin. Electrochemically reduced graphene oxide hybrid Films for electrocatalytic hydrogen evolution in aqueous solution. Langmuir, 30(23), 6990-6998.
[2] Honarpazhouh, Y., Astaraei, F. R., Naderi, H. R., & Tavakoli, O. (2016). Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide. International Journal of Hydrogen Energy, 41(28), 12175-12182.
[3] Hosseini, M., & Ariankhah, E. (2016). Electrochemical Evaluation of Ni/RuO2 and Ni/RuO2/Mixed-Metal Oxide Coatings Electrodes toward Hydrogen Evolution Reaction in Alkaline Medium. Applied Chemistry, 11(41), 147-164.
[4] Oberoi, A. S., Nijhawan, P., & Singh, P. (2018). A novel electrochemical hydrogen storage-based proton battery for renewable energy storage. Energies, 12(1), 82.
[5] X. Ji, B. Liu, X. Ren, X. Shi, A.M. Asiri, X. Sun, ACS Sustain. Chem. Eng. 6 (2018) 4499.
[6] Amirhosseiny, A., & Zarei, K. (2019). Electrochemical preparation of an electrocatalytical layer containing hollow platinum nanoparticles and reduced graphene oxide on the pencil graphite electrode for hydrogen evolving reaction. Applied Chemistry, 14 (51), 135-146. (in persion)
[7] Ghaffarinead, A., Tabatabaei, A., Sohrabi, B., & Salahandish, R. (2019). The effect of surfactants on electrochemical hydrogen production. Applied Chemistry, 14 (50), 25-39. (in persion)
[8] Liu, H., Shang, J., Zeng, L., Cao, B., Geng, H., Lang, J., ... & Gu, H. (2021). A setaria-shaped Pd/Ni-NC electrocatalyst for high efficient hydrogen evolution reaction. Chemical Engineering Journal Advances, 6, 100101.
[9] Nie, M., Sun, H., Liao, J., Li, Q., Xue, Z., Xue, F., ... & Teng, L. (2021). Study on the catalytic performance of Pd/TiO2 electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 46(9), 6441-6447.
[10] Liu, Y. Y., Zhang, H. P., Zhu, B., Zhang, H. W., Fan, L. D., Chai, X. Y., ... & He, C. X. (2018). C/N-co-doped Pd coated Ag nanowires as a high-performance electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 283, 221-227.
[11] Song, C., Zhao, Z., Sun, X., Zhou, Y., Wang, Y., & Wang, D. (2019). In situ growth of Ag nanodots decorated Cu2O porous nanobelts networks on copper foam for efficient HER electrocatalysis. Small, 15(29), 1804268.
[12] Akhtar, A., Ghaffarinejad, A., Hosseini, S. M., Manteghi, F., & Maminejad, N. (2015). Electrocatalytic hydrogen production by bulk and nano Fe2O3 and carbon nanotube modified with Fe2O3. Journal of Electroanalytical Chemistry, 739, 73-83.
[13] Beshkar, F., & Salavati-Niasari, M. (2015). Facile synthesis of nickel chromite nanostructures by hydrothermal route for photocatalytic degradation of acid black 1 under visible light. Journal of Nanostructures, 5(1), 17-23.
[14] Huang, H., Yan, M., Yang, C., He, H., Jiang, Q., Yang, L., ... & Yamauchi, Y. (2019). Graphene nanoarchitectonics: recent advances in graphene‐based electrocatalysts for hydrogen evolution reaction. Advanced Materials, 31(48), 1903415.
[15] Dong, X., Liu, X., Chen, H., Xu, X., Jiang, H., Gu, C., ... & Hu, Y. (2021). Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction. Journal of Materials Science, 56, 2385-2398.
[16] Pandurangan, M., & Kim, D. H. (2015). In vitro toxicity of zinc oxide nanoparticles: a review. Journal of Nanoparticle Research, 17, 1-8.
[17] Qiu, L., Jiang, L., Ye, Z., Liu, Y., Cen, T., Peng, X., & Yuan, D. (2019). Phosphorus-doped Co3Mo3C/Co/CNFs hybrid: A remarkable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 325, 134962.
[18] Sun, Y., Liu, C., Grauer, D. C., Yano, J., Long, J. R., Yang, P., & Chang, C. J. (2013). Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. Journal of the American Chemical Society, 135(47), 17699-17702.
[19] Nodehi, Z., Rafati, A. A., & Ghaffarinejad, A. (2018). Palladium-silver polyaniline composite as an efficient catalyst for ethanol oxidation. Applied Catalysis A: General, 554, 24-34.
[20] Nazir, R., Fageria, P., Basu, M., & Pande, S. (2017). Decoration of carbon nitride surface with bimetallic nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via galvanic exchange for hydrogen evolution reaction. The Journal of Physical Chemistry C, 121(36), 19548-19558.
[21] Gao, X., Yu, G., Zheng, L., Zhang, C., Li, H., Wang, T., ... & Chen, W. (2019). Strong electron coupling from the sub-nanometer Pd clusters confined in porous ceria nanorods for highly efficient electrochemical hydrogen evolution reaction. ACS Applied Energy Materials, 2(2), 966-973.
[22] Kim, J., Byun, S., Smith, A. J., Yu, J., & Huang, J. (2013). Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. The journal of physical chemistry letters, 4(8), 1227-1232.
[23] Bhalothia, D., Wang, S. P., Lin, S., Yan, C., Wang, K. W., & Chen, P. C. (2020). Atomic Pt-Clusters Decoration Triggers a High-Rate Performance on Ni@Pd Bimetallic Nanocatalyst for Hydrogen Evolution Reaction in Both Alkaline and Acidic Medium. Applied Sciences, 10(15), 5155.