ساخت سبز و پایدار زیست محیطی CuFe2O4/CuO-rGO@EosinY به عنوان فوتوکاتالیزور برای سنتز مشتقات زانتن

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

دانشکده شیمی، دانشگاه سمنان، سمنان، ایران

چکیده

یکی از بزرگترین چالش‌های گسترش فرآیندهای فتوشیمیایی، ایجاد فوتوکاتالیزو‌های موثر نور مرئی برای سنتز آلی بوده است. فوتوکاتالیزورهای ناهمگن یک روش مطلوب برای تحقق واکنش های آلی سبز و دوستدار محیط زیست ارائه می دهند. ما کاتالیزور ناهمگن CuFe2O4/CuO-rGO@EosinY (EY) را با تثبیت ائوزین وای بر روی بستر CuFe2O4/CuO-rGO ساختیم. بستر ائوزین از کلسینه شدن هیدروژل دانه ریحان (BSH) آغشته به مس و آهن ساخته شد. کاتالیزور ناهمگن تهیه‌ شده به‌عنوان فوتوکاتالیزور در یک واکنش چند جزئی در شرایط سبز برای تولید مشتقات مهم زانتن از طریق تراکم آلدئیدهای آروماتیک و دیمدون تحت شرایط تابش نور مرئی استفاده شد. فوتوکاتالیزور سنتز شده با استفاده از تکنیک‌های مختلفی مانند FT-IR، XRD، TGA شناسایی شد .مزایای قابل توجه روش حاضر شامل بازده قابل توجه، مقرون به صرفه بودن، کار آسان، دامنه وسیع بستر و قابلیت استفاده مجدد آن است. کاتالیزور تهیه شده در چهار مرحله بدون کاهش قابل توجهی در راندمان واکنش مورد استفاده قرار گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Green and Environmentally Sustainable Fabrication of CuFe2O4/CuO-rGO@EosinY as Photocatalyst for the Synthesis of Xanthene Derivatives

نویسندگان [English]

  • Effat Samiee Paghaleh
  • Eskandar Kolvari
Department of Chemistry, Semnan University, Semnan, Iran
چکیده [English]

One of the biggest challenges to the expansion of photochemical processes has been the creation of effective visible light photocatalysts for organic synthesis. Heterogeneous photocatalysts present a favorable procedure to realize green and eco-friendly organic reactions. we fabricated the heterogenous catalyst CuFe2O4/CuO-rGO@EosinY (EY) by immobilizing eosin on the substrate CuFe2O4/CuO-rGO. The substrate of eosin was fabricated from the calcination of basil seed hydrogel (BSH) impregnated with copper and iron. The prepared heterogeneous catalyst as photocatalyst was applied in a green one-pot multi-component protocol for the production of biologically important xanthene derivatives via condensation of aromatic aldehydes and dimedone under the condition of visible light irradiation. The synthesized photocatalyst was characterized using various techniques such as FT-IR, XRD, and TGA. The significant advantages of the present methodology include remarkable yield, cost-effectiveness, easy work-up, broad substrate scope, and significant reusability. The prepared catalyst was used four times without a significant decrease in reaction efficiency.

کلیدواژه‌ها [English]

  • "Basil Seed"
  • "EosinY"
  • "reduced graphene oxide"
  • "xanthene"
  • "heterogeneous photocatalyst"
  • " visible light"

This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1]  Chen, W., Gu, D., Zhou, T., & Peng, X. (2023). Visible-light-induced sulfoxidation using chitosan-supported   organic dyes photocatalyst. Dyes and Pigments, 210, 111042.
[2] Cambie, D., Bottecchia, C., Straathof, N. J., Hessel, V., & Noel, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chemical Reviews, 116(17), 10276-10341.
[3] Cao, M.-Y., Ren, X., & Lu, Z. (2015). Olefin difunctionalizations via visible light photocatalysis. Tetrahedron Letter, 56(24), 3732-3742.
[4] Ghosh, S., Saikh, F., Das, J., & Pramanik, A. K. (2013). Hantzsch 1,4-dihydropyridine synthesis in aqueous ethanol by visible light. Tetrahedron Letter, 54(1), 58-62.
[5] König, B. (2017). Photocatalysis in organic synthesis–past, present, and future. European Journal of Organic Chemistry, 2017(15), 1979-1981.
[6] Tomoko, Y. (2022). Visible-light-induced Organocatalytic Peruoroalkylation of Electron rich Olefins. Journal of Synthetic Organic Chemistry, Japan, 112,8610.
[7] Sharma, S., & Sharma, A. (2019). Recent advances in photocatalytic manipulations of Rose Bengal in organic synthesis. Organic & Biomolecular Chemistry, 17(18), 4384-4405.
[8] Prier, C. K., Rankic, D. A., & MacMillan, D. W. (2013). Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chemical reviews, 113(7), 5322-5363
[9] Srivastava, V., & Singh, P. P. (2017). Eosin Y catalysed photoredox synthesis: a review. RSC advances, 7(50), 31377-31392
[10] Gisbertz, S., & Pieber, B. (2020). Heterogeneous photocatalysis in organic synthesis. ChemPhotoChem, 4(7), 456-475.
[11] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 293(5528), 269-271.
[12] Hwang, D. W., Kim, H. G., Jang, J. S., Bae, S. W., Ji, S. M., & Lee, J. S. (2004).Photocatalytic decomposition of water–methanol solution over metal-doped layered perovskites under visible light irradiation. Catalysis Today, 93, 845-850.
[13] Li, Y., Chen, G., Zhou, C., & Sun, J. (2009). A simple template-free synthesis of nanoporous ZnS–In2S3–Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light. Chemical Communications, (15), 2020-2022.
[14] Li, Q., Jin, Z., Peng, Z., Li, Y., Li, S., & Lu, G. (2007). High-efficient photocatalytic hydrogen evolution on eosinY-sensitized Ti−MCM41 zeolite under visible-light irradiation. Journal of Physical Chemistry C, 111(23), 8237-8241.
[15] Youngblood, W. J., Lee, S.-H. A., Maeda, K., & Mallouk, T. E. (2009). Visible light water splitting using dye-sensitized oxide semiconductors. Accounts of Chemical Research, 42(12), 1966-1973.
[16] Li, S., Yang, X., Wang, Y., Zhou, H., Zhang, B., Huang, G., Li, Y. (2018). Visible Light‐Induced Aerobic Oxidative− H Arylation of Glycine Derivatives. Advanced Synthesis and Catalysis, 360(22), 4452-4456.
[17] Kalaitzakis, D., Kouridaki, A., Noutsias, D., Montagnon, T., & Vassilikogiannakis, G. (2015). Methylene Blue as a Photosensitizer and Redox Agent: Synthesis of 5‐Hydroxy‐1H‐pyrrol‐2 (5H)‐ones from Furans. Angewandte Chemie International Edition, 54(21), 6283-6287.
[18] Julkapli, N. M., & Bagheri, S. (2015). Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 40(2), 948-979.
[19] Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. (2012). Design of graphene-based TiO2 photocatalysts—a review. Environmental Science and Pollution Research, 19, 3676-3687.
[20]  Li, G., Li, K., Liu, A., Yang, P., Du, Y., & Zhu, M. (2017). 3D flower-like β-MnO2/reduced graphene oxide nanocomposites for catalytic ozonation of dichloroacetic acid. Scientific Reports, 7(1), 43643
[21] Yang, H., Kershaw, S. V., Wang, Y., Gong, X., Kalytchuk, S., Rogach, A. L., & Teoh, W. Y. (2013). Shuttling photoelectrochemical electron transport in tricomponent CdS/rGO/TiO2 nanocomposites. Journal of Physical Chemistry C, 117(40), 20406-20414.
[22] Loh, K. P., Bao, Q., Ang, P. K., & Yang, J. (2010). The chemistry of graphene. Journal of Materials Chemistry, 20(12), 2277-2289.
[23] Puangpetch, T., Sommakettarin, P., Chavadej, S., & Sreethawong, T. (2010). Hydrogen production from water splitting over Eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation. International Journal of Hydrogen Energy, 35(22), 12428-12442.
[24] Wan, D., Wu, L., Liu, Y., Chen, J., Zhao, H., & Xiao, S. (2019). Enhanced adsorption of aqueous tetracycline hydrochloride on renewable porous clay-carbon adsorbent derived from spent bleaching earth via pyrolysis. Langmuir, 35(11), 3925-3936.
[25] Merroun, Y., Chehab, S., El Hallaoui, A., Guedira, T., Boukhris, S., Ghailane, R., & Souizi, A. (2023). Triple superphosphate modified by tin (II) chloride: As a reusable and efficient catalyst for the one-pot synthesis of xanthene and xanthenone derivatives under green conditions. Journal of Molecular Structure, 1294, 136383.
[26] Galehban, M. H., Zeynizadeh, B., & Mousavi, H. (2022). Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC advances, 12(26), 16454-16478.
[27] Safaei Ghomi, J., Zahedi, S., & Ghasemzadeh, M. A. (2014). AgI nanoparticles as a remarkable catalyst in the synthesis of (amidoalkyl) naphthol and oxazine derivatives: an eco-friendly approach. Monatshefte für Chemie-Chemical Monthly, 145, 1191-1199.
[28] Safaei-Ghomi, J., & Ghasemzadeh, M. A. (2017). Zinc oxide nanoparticle promoted highly efficient one pot three-component synthesis of 2, 3-disubstituted benzofurans. Arabian Journal of Chemistry, 10, S1774-S1780.
[29] Safaei-Ghomi, J., Ghasemzadeh, M. A., & Kakavand-Qalenoei, A. (2016). CuI-nanoparticles-catalyzed one-pot synthesis of benzo [b] furans via three-component coupling of aldehydes, amines and alkyne. Journal of Saudi Chemical Society, 20(5), 502-509
[30] Farhadi, S., Ghasemzadeh, M. A., & Aghaei, S. S. (2019). NiCo2O4@ Ni (BDC) Nano‐Porous Metal–Organic Framework as a Novel Catalyst for the Synthesis of Spiro [indene [1, 2‐d] pyrimidine‐ones and Investigation of Their Antimicrobial Activities. ChemistrySelect, 4(2), 729-736.
[31] Nile, S. H., & Park, S. W. (2015). Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products, 70, 238-244.
[32] Figueiredo, J., Serrano, J. L., Cavalheiro, E., Keurulainen, L., Yli-Kauhaluoma, J., Moreira, V. M., ... & Almeida, P. (2018). Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents. European journal of medicinal chemistry, 143, 829-842.
[33] Abdulhafiz, F., Mohammed, A., Kayat, F., Bhaskar, M., Hamzah, Z., Podapati, S. K., & Reddy, L. V. (2020). Xanthine oxidase inhibitory activity, chemical composition, antioxidant properties and GC-MS Analysis of Keladi Candik (Alocasia longiloba Miq). Molecules, 25(11), 2658.
[34] Samiee Paghaleh, E., Dashtian, K., Yousefi Seyf, J., Seidi, F., & Kolvari, E. (2023). Green Synthesis of Stable CuFe2O4/CuO-rGO Heterostructure Photocatalyst Using Basil Seeds as Chemo-reactors for Improved Oxytetracycline Degradation. Journal of Environmental Chemical Engineering, 110676.
[35] Phuruangrat, A., Kuntalue, B., Thongtem, S., & Thongtem, T. (2016). Synthesis of cubic CuFe2O4 nanoparticles by microwave-hydrothermal method and their magnetic properties. Materials Letters, 167, 65-68.
[36] Anselmi, C., Capitani, D., Tintaru, A., Doherty, B., Sgamellotti, A., & Miliani, C. (2017). Beyond the color: a structural insight to eosin-based lakes. Dyes and Pigments, 140, 297-311.
[37] Ahmad, M. A., Eusoff, M. A., Oladoye, P. O., Adegoke, K. A., & Bello, O. S. (2020). Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel. Chemical Data Collections, 28, 100426.
[38] Huang, X.-Y., Bin, J.-P., Bu, H.-T., Jiang, G.-B., & Zeng, M.-H. (2011). Removal of anionic dye eosinY from aqueous solution using ethylenediamine modified chitosan. Carbohydrate Polymers, 84(4), 1350-1356.
[39] Peluso, P., Mamane, V., Dessì, A., Dallocchio, R., Aubert, E., Gatti, C., Cossu, S. (2020). Halogen bond in separation science: A critical analysis across experimental and theoretical results. Journal of Chromatography A, 1616, 460788.
[40] Wang, H. K., Morris‐Natschke, S. L., & Lee, K. H. (1997). Recent advances in the discovery and development of topoisomerase inhibitors as antitumor agents. Medicinal Research Reviews, 17(4), 367-425.
[41] Mardare, D. (2000). MT asca, M. Delibas and GI Rusu. Applied Surface Science, 156, 200.
[42] Yahia, I., & Keshk, S. M. (2017). Preparation and characterization of PVA/Congo red polymeric composite films for a wide scale laser filters. Optics & Laser Technology, 90, 197-200.
[43] Liu, X., Cong, T., Liu, P., & Sun, P. (2016). Synthesis of 1, 2-diketones via a metal-free, visible-light-induced aerobic photooxidation of alkynes. Journal of Organic Chemistry, 81(16), 7256-7261.
[44] Singh, M., Yadav, A. K., Yadav, L. D. S., & Singh, R. (2018). Synthesis of 6-thiocyanatophenanthridines by visible-light-and air-promoted radical thiocyanation of 2-isocyanobiphenyls. Synlett, 29(02), 176-180.
[45] Rabiei, kh., & Mostafapour, Z . (2022). Functionalized nanoclinoptilolite: a new and suitable nanocatalyst for the synthesis of xanthene dione green derivatives in solvent-free conditions. Applied Chemistry,17(64),44-27. (in persion)
[46] M Hosseini, M., Kolvari, E., Vahidian, M., & Bagheri, R. (2016). Nano perlite sulfuric acid: an inexpensive heterogeneous acid catalyst for the synthesis of 1, 8-dioxo-octahydroxanthenes and tetrahydrobenzoxanthenes under solvent-free conditions. Applied Chemistry, 11(41), 109-118 (in persion).
[47] Kazemi Rad, R., & Azizian, J. (2015). One-pot synthesis of 2, 2'-Arylmethylene bis (3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) by electrochemical method. Applied Chemistry, 10(36), 45-52. (in persion)
[48] Tabrizian, E., & Amuzadeh, A. (2014). Synthesis of xanthene derivatives based on α,/α-bis(benzylidene)cycloalkanones using tungsten phosphoric acid catalyst under solvent-free conditions. Applied Chemistry, 9(30), 23-30. (in persion)
[49] Nikpasand, M., Zare Fekri, L. (2019). Synthesis of novel multicomponent 9-aryl-2H-xanthene-8,1(2H)-diones with diazo bridge using ionic liquid [BDBDMIm]HSO4. Applied Chemistry, 14(51), 325-336. (in persion)
[50]  Yıldız, Y., Esirden, İ., Erken, E., Demir, E., Kaya, M., & Şen, F. (2016). Microwave (Mw)‐assisted Synthesis of 5‐Substituted 1H‐Tetrazoles via [3+ 2] Cycloaddition Catalyzed by Mw‐Pd/Co Nanoparticles Decorated on Multi‐Walled Carbon Nanotubes. ChemistrySelect, 1(8), 1695-1701.
[51] Song, G., Wang, B., Luo, H., & Yang, L. (2007). Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catalysis Communications, 8(4), 673-676.
[52] Maghsoodlou, M. T., Habibi-Khorassani, S. M., Shahkarami, Z., Maleki, N., & Rostamizadeh, M. (2010). An efficient synthesis of 2, 2′-arylmethylene bis (3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) and 1, 8-dioxooctahydroxanthenes using ZnO and ZnO–acetyl chloride. Chinese Chemical Letters, 21(6), 686-689.
[53] Kahandal, S. S., Burange, A. S., Kale, S. R., Prinsen, P., Luque, R., & Jayaram, R. V. (2017). An efficient route to 1,8-dioxo-octahydroxanthenes and-decahydroacridines using a sulfated zirconia catalyst. Catalysis Communications, 97, 138-145.