[1] Chen, W., Gu, D., Zhou, T., & Peng, X. (2023). Visible-light-induced sulfoxidation using chitosan-supported organic dyes photocatalyst. Dyes and Pigments, 210, 111042.
[2] Cambie, D., Bottecchia, C., Straathof, N. J., Hessel, V., & Noel, T. (2016). Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chemical Reviews, 116(17), 10276-10341.
[3] Cao, M.-Y., Ren, X., & Lu, Z. (2015). Olefin difunctionalizations via visible light photocatalysis. Tetrahedron Letter, 56(24), 3732-3742.
[4] Ghosh, S., Saikh, F., Das, J., & Pramanik, A. K. (2013). Hantzsch 1,4-dihydropyridine synthesis in aqueous ethanol by visible light. Tetrahedron Letter, 54(1), 58-62.
[5] König, B. (2017). Photocatalysis in organic synthesis–past, present, and future. European Journal of Organic Chemistry, 2017(15), 1979-1981.
[6] Tomoko, Y. (2022). Visible-light-induced Organocatalytic Peruoroalkylation of Electron rich Olefins. Journal of Synthetic Organic Chemistry, Japan, 112,8610.
[7] Sharma, S., & Sharma, A. (2019). Recent advances in photocatalytic manipulations of Rose Bengal in organic synthesis. Organic & Biomolecular Chemistry, 17(18), 4384-4405.
[8] Prier, C. K., Rankic, D. A., & MacMillan, D. W. (2013). Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chemical reviews, 113(7), 5322-5363
[9] Srivastava, V., & Singh, P. P. (2017). Eosin Y catalysed photoredox synthesis: a review. RSC advances, 7(50), 31377-31392
[10] Gisbertz, S., & Pieber, B. (2020). Heterogeneous photocatalysis in organic synthesis. ChemPhotoChem, 4(7), 456-475.
[11] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 293(5528), 269-271.
[12] Hwang, D. W., Kim, H. G., Jang, J. S., Bae, S. W., Ji, S. M., & Lee, J. S. (2004).Photocatalytic decomposition of water–methanol solution over metal-doped layered perovskites under visible light irradiation. Catalysis Today, 93, 845-850.
[13] Li, Y., Chen, G., Zhou, C., & Sun, J. (2009). A simple template-free synthesis of nanoporous ZnS–In2S3–Ag2S solid solutions for highly efficient photocatalytic H2 evolution under visible light. Chemical Communications, (15), 2020-2022.
[14] Li, Q., Jin, Z., Peng, Z., Li, Y., Li, S., & Lu, G. (2007). High-efficient photocatalytic hydrogen evolution on eosinY-sensitized Ti−MCM41 zeolite under visible-light irradiation. Journal of Physical Chemistry C, 111(23), 8237-8241.
[15] Youngblood, W. J., Lee, S.-H. A., Maeda, K., & Mallouk, T. E. (2009). Visible light water splitting using dye-sensitized oxide semiconductors. Accounts of Chemical Research, 42(12), 1966-1973.
[16] Li, S., Yang, X., Wang, Y., Zhou, H., Zhang, B., Huang, G., Li, Y. (2018). Visible Light‐Induced Aerobic Oxidative− H Arylation of Glycine Derivatives. Advanced Synthesis and Catalysis, 360(22), 4452-4456.
[17] Kalaitzakis, D., Kouridaki, A., Noutsias, D., Montagnon, T., & Vassilikogiannakis, G. (2015). Methylene Blue as a Photosensitizer and Redox Agent: Synthesis of 5‐Hydroxy‐1H‐pyrrol‐2 (5H)‐ones from Furans. Angewandte Chemie International Edition, 54(21), 6283-6287.
[18] Julkapli, N. M., & Bagheri, S. (2015). Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 40(2), 948-979.
[19] Morales-Torres, S., Pastrana-Martínez, L. M., Figueiredo, J. L., Faria, J. L., & Silva, A. M. (2012). Design of graphene-based TiO2 photocatalysts—a review. Environmental Science and Pollution Research, 19, 3676-3687.
[20] Li, G., Li, K., Liu, A., Yang, P., Du, Y., & Zhu, M. (2017). 3D flower-like β-MnO2/reduced graphene oxide nanocomposites for catalytic ozonation of dichloroacetic acid. Scientific Reports, 7(1), 43643
[21] Yang, H., Kershaw, S. V., Wang, Y., Gong, X., Kalytchuk, S., Rogach, A. L., & Teoh, W. Y. (2013). Shuttling photoelectrochemical electron transport in tricomponent CdS/rGO/TiO2 nanocomposites. Journal of Physical Chemistry C, 117(40), 20406-20414.
[22] Loh, K. P., Bao, Q., Ang, P. K., & Yang, J. (2010). The chemistry of graphene. Journal of Materials Chemistry, 20(12), 2277-2289.
[23] Puangpetch, T., Sommakettarin, P., Chavadej, S., & Sreethawong, T. (2010). Hydrogen production from water splitting over Eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation. International Journal of Hydrogen Energy, 35(22), 12428-12442.
[24] Wan, D., Wu, L., Liu, Y., Chen, J., Zhao, H., & Xiao, S. (2019). Enhanced adsorption of aqueous tetracycline hydrochloride on renewable porous clay-carbon adsorbent derived from spent bleaching earth via pyrolysis. Langmuir, 35(11), 3925-3936.
[25] Merroun, Y., Chehab, S., El Hallaoui, A., Guedira, T., Boukhris, S., Ghailane, R., & Souizi, A. (2023). Triple superphosphate modified by tin (II) chloride: As a reusable and efficient catalyst for the one-pot synthesis of xanthene and xanthenone derivatives under green conditions. Journal of Molecular Structure, 1294, 136383.
[26] Galehban, M. H., Zeynizadeh, B., & Mousavi, H. (2022). Ni II NPs entrapped within a matrix of l-glutamic acid cross-linked chitosan supported on magnetic carboxylic acid-functionalized multi-walled carbon nanotube: a new and efficient multi-task catalytic system for the green one-pot synthesis of diverse heterocyclic frameworks. RSC advances, 12(26), 16454-16478.
[27] Safaei Ghomi, J., Zahedi, S., & Ghasemzadeh, M. A. (2014). AgI nanoparticles as a remarkable catalyst in the synthesis of (amidoalkyl) naphthol and oxazine derivatives: an eco-friendly approach. Monatshefte für Chemie-Chemical Monthly, 145, 1191-1199.
[28] Safaei-Ghomi, J., & Ghasemzadeh, M. A. (2017). Zinc oxide nanoparticle promoted highly efficient one pot three-component synthesis of 2, 3-disubstituted benzofurans. Arabian Journal of Chemistry, 10, S1774-S1780.
[29] Safaei-Ghomi, J., Ghasemzadeh, M. A., & Kakavand-Qalenoei, A. (2016). CuI-nanoparticles-catalyzed one-pot synthesis of benzo [b] furans via three-component coupling of aldehydes, amines and alkyne. Journal of Saudi Chemical Society, 20(5), 502-509
[30] Farhadi, S., Ghasemzadeh, M. A., & Aghaei, S. S. (2019). NiCo2O4@ Ni (BDC) Nano‐Porous Metal–Organic Framework as a Novel Catalyst for the Synthesis of Spiro [indene [1, 2‐d] pyrimidine‐ones and Investigation of Their Antimicrobial Activities. ChemistrySelect, 4(2), 729-736.
[31] Nile, S. H., & Park, S. W. (2015). Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products, 70, 238-244.
[32] Figueiredo, J., Serrano, J. L., Cavalheiro, E., Keurulainen, L., Yli-Kauhaluoma, J., Moreira, V. M., ... & Almeida, P. (2018). Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents. European journal of medicinal chemistry, 143, 829-842.
[33] Abdulhafiz, F., Mohammed, A., Kayat, F., Bhaskar, M., Hamzah, Z., Podapati, S. K., & Reddy, L. V. (2020). Xanthine oxidase inhibitory activity, chemical composition, antioxidant properties and GC-MS Analysis of Keladi Candik (Alocasia longiloba Miq). Molecules, 25(11), 2658.
[34] Samiee Paghaleh, E., Dashtian, K., Yousefi Seyf, J., Seidi, F., & Kolvari, E. (2023). Green Synthesis of Stable CuFe2O4/CuO-rGO Heterostructure Photocatalyst Using Basil Seeds as Chemo-reactors for Improved Oxytetracycline Degradation. Journal of Environmental Chemical Engineering, 110676.
[35] Phuruangrat, A., Kuntalue, B., Thongtem, S., & Thongtem, T. (2016). Synthesis of cubic CuFe2O4 nanoparticles by microwave-hydrothermal method and their magnetic properties. Materials Letters, 167, 65-68.
[36] Anselmi, C., Capitani, D., Tintaru, A., Doherty, B., Sgamellotti, A., & Miliani, C. (2017). Beyond the color: a structural insight to eosin-based lakes. Dyes and Pigments, 140, 297-311.
[37] Ahmad, M. A., Eusoff, M. A., Oladoye, P. O., Adegoke, K. A., & Bello, O. S. (2020). Statistical optimization of Remazol Brilliant Blue R dye adsorption onto activated carbon prepared from pomegranate fruit peel. Chemical Data Collections, 28, 100426.
[38] Huang, X.-Y., Bin, J.-P., Bu, H.-T., Jiang, G.-B., & Zeng, M.-H. (2011). Removal of anionic dye eosinY from aqueous solution using ethylenediamine modified chitosan. Carbohydrate Polymers, 84(4), 1350-1356.
[39] Peluso, P., Mamane, V., Dessì, A., Dallocchio, R., Aubert, E., Gatti, C., Cossu, S. (2020). Halogen bond in separation science: A critical analysis across experimental and theoretical results. Journal of Chromatography A, 1616, 460788.
[40] Wang, H. K., Morris‐Natschke, S. L., & Lee, K. H. (1997). Recent advances in the discovery and development of topoisomerase inhibitors as antitumor agents. Medicinal Research Reviews, 17(4), 367-425.
[41] Mardare, D. (2000). MT asca, M. Delibas and GI Rusu. Applied Surface Science, 156, 200.
[42] Yahia, I., & Keshk, S. M. (2017). Preparation and characterization of PVA/Congo red polymeric composite films for a wide scale laser filters. Optics & Laser Technology, 90, 197-200.
[43] Liu, X., Cong, T., Liu, P., & Sun, P. (2016). Synthesis of 1, 2-diketones via a metal-free, visible-light-induced aerobic photooxidation of alkynes. Journal of Organic Chemistry, 81(16), 7256-7261.
[44] Singh, M., Yadav, A. K., Yadav, L. D. S., & Singh, R. (2018). Synthesis of 6-thiocyanatophenanthridines by visible-light-and air-promoted radical thiocyanation of 2-isocyanobiphenyls. Synlett, 29(02), 176-180.
[45] Rabiei, kh., & Mostafapour, Z . (2022). Functionalized nanoclinoptilolite: a new and suitable nanocatalyst for the synthesis of xanthene dione green derivatives in solvent-free conditions. Applied Chemistry,17(64),44-27. (in persion)
[46] M Hosseini, M., Kolvari, E., Vahidian, M., & Bagheri, R. (2016). Nano perlite sulfuric acid: an inexpensive heterogeneous acid catalyst for the synthesis of 1, 8-dioxo-octahydroxanthenes and tetrahydrobenzoxanthenes under solvent-free conditions. Applied Chemistry, 11(41), 109-118 (in persion).
[47] Kazemi Rad, R., & Azizian, J. (2015). One-pot synthesis of 2, 2'-Arylmethylene bis (3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) by electrochemical method. Applied Chemistry, 10(36), 45-52. (in persion)
[48] Tabrizian, E., & Amuzadeh, A. (2014). Synthesis of xanthene derivatives based on α,/α-bis(benzylidene)cycloalkanones using tungsten phosphoric acid catalyst under solvent-free conditions. Applied Chemistry, 9(30), 23-30. (in persion)
[49] Nikpasand, M., Zare Fekri, L. (2019). Synthesis of novel multicomponent 9-aryl-2H-xanthene-8,1(2H)-diones with diazo bridge using ionic liquid [BDBDMIm]HSO4. Applied Chemistry, 14(51), 325-336. (in persion)
[50] Yıldız, Y., Esirden, İ., Erken, E., Demir, E., Kaya, M., & Şen, F. (2016). Microwave (Mw)‐assisted Synthesis of 5‐Substituted 1H‐Tetrazoles via [3+ 2] Cycloaddition Catalyzed by Mw‐Pd/Co Nanoparticles Decorated on Multi‐Walled Carbon Nanotubes. ChemistrySelect, 1(8), 1695-1701.
[51] Song, G., Wang, B., Luo, H., & Yang, L. (2007). Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catalysis Communications, 8(4), 673-676.
[52] Maghsoodlou, M. T., Habibi-Khorassani, S. M., Shahkarami, Z., Maleki, N., & Rostamizadeh, M. (2010). An efficient synthesis of 2, 2′-arylmethylene bis (3-hydroxy-5, 5-dimethyl-2-cyclohexene-1-one) and 1, 8-dioxooctahydroxanthenes using ZnO and ZnO–acetyl chloride. Chinese Chemical Letters, 21(6), 686-689.
[53] Kahandal, S. S., Burange, A. S., Kale, S. R., Prinsen, P., Luque, R., & Jayaram, R. V. (2017). An efficient route to 1,8-dioxo-octahydroxanthenes and-decahydroacridines using a sulfated zirconia catalyst. Catalysis Communications, 97, 138-145.