[1] Yin, Z., Chen, S., Xu, Z., Zhang, C., He, J., Zou, J., chen, D., & sun, W. (2020).Flotation separation of molybdenite from chalcopyrite using an environmentally-efficient depressant L-cysteine and its adsoption mechanism. Minerals Engineering, 156, 106438.
[2] Clemente Plaza, N., Reig García-Galbis, M., & Martínez-Espinosa, RM. (2018). Effects of the Usage of l-Cysteine (l-Cys) on Human Health. Molecules, 23(3), 575.
[3] Selçuk K., Kivrak, H., & Aktaş N. (2021). Novel CNT supported molybdenum catalyst for detection of L-cysteine in its natural environment. Catalysts, 11(12), 1561.
[4] Juliano, C., Cossu, M., Rota, MT., Satta, D., Poggi, P., & Giunchedi, P. (2011). Buccal tablets containing cysteine and chlorhexidine for the reduction of acetaldehyde levels in the oral cavity. Drug development and industrial pharmacy, 37(10) 1192-1199.
[5] Dong, W., Wang, R., Gong, X., Liang, W., & Dong, C. (2019). A far-red FRET fluorescent probe for ratiometric detection of l-cysteine based on carbon dots and N-acetyl-l-cysteine-capped gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 213, 90-96.
[6] Fernandéz, J., Rouzard, K., Voronkov, M., Huber, K., Stock, J., Stock, M., gordon, j.s., & perez, E.(2015). Anti‐inflammatory and anti‐bacterial properties of tetramethylhexadecenyl succinyl cysteine (TSC): a skin‐protecting cosmetic functional ingredient. International Journal of Cosmetic Science, 37(1),129-133.
[7] Liang, Y-C., Zhao, Q., Wu, X-Y., Li, Z., Lu, Y-J., Liu, Q., dong, L., & shan, C-X. (2019). A ratiometric fluorescent nanoprobe based on quenched carbon dots-rhodamine B for selective detection of L-cysteine. Journal of Alloys and Compounds, 788, 615-622.
[8] Hsu, CN., Lin, YJ., Lu, PC., & Tain, YL. (2018). Early supplementation of d‐cysteine or L‐cysteine prevents hypertension and kidney damage in spontaneously hypertensive rats exposed to high‐salt intake. Molecular Nutrition & Food Research, 62(2), 1700596.
[9] Xu, H., Huang, S., Liao, C., Li, Y., Zheng, B., Du, J., Xiao, D. (2015). Highly selective and sensitive fluorescence probe based on thymine-modified carbon dots for Hg2+ and L-cysteine detection. RSC advances, 5(108), 89121-89127
[10] Wu, H., Jiang, J., Gu, X., & Tong, C. (2017).Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe (III) ions and L-cysteine. Microchimica Acta, 184, 2291-2298.
[11] Zeng, X., Zhang, X., Zhu, B., Jia, H., & Li, Y.(2012). A highly selective wavelength-ratiometric and colorimetric probe for cysteine. Dyes and Pigments, 94(1), 10-15.
[12] Lee, SA., Lee, JJ., Shin, JW., Min, KS., & Kim C. (2015). A colorimetric chemosensor for the sequential detection of copper(II) and cysteine. Dyes and Pigments, 116, 131-138.
[13] Lau, C., Qin, X., Liang, J., & Lu, J. (2004).Determination of cysteine in a pharmaceutical formulation by flow injection analysis with a chemiluminescence detector. Analytica Chimica Acta, 514(1), 45-49.
[14] Wada, M., Kuroki, M., Minami, Y., Ikeda, R., Sekitani, Y., Takamura, N., Kawakami, S., Kuroda, N., & Nakashima, K. (2014). Quantitation of sulfur-containing amino acids, homocysteine, methionine and cysteine in dried blood spot from newborn baby by HPLC-fluorescence detection. Biomedical Chromatography, 28(6), 810-814.
[15] Vellasco, AP., Haddad, R., Eberlin, MN., & Höehr, NF. (2002). Combined cysteine and homocysteine quantitation in plasma by trap and release membrane introduction mass spectrometry. Analyst, 127(8), 1050-1053.
[16] Jin, W., & Wang, Y. (1997). Determination of cysteine by capillary zone electrophoresis with end-column amperometric detection at a gold/mercury amalgam microelectrode without deoxygenation. Journal of Chromatography A, 769(2),307-314.
[17] Chaichi, MJ., Ehsani, M., Khajvand, T., Golchoubian, H., & Rezaee, E. (2014). Determination of cysteine and glutathione based on the inhibition of the dinuclear Cu (II)-catalyzed luminol–H2O2 chemiluminescence reaction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy ,122, 405-410.
[18] Devasenathipathy, R., Mani ,V., Chen, S-M., Kohilarani, K., & Ramaraj, S. (2015). Determination of L-cysteine at iron tetrasulfonated phthalocyanine decorated multiwalled carbon nanotubes film modified electrode. International Journal of Electrochemical Science, 10(1),682-690.
[19] Yan, L., Kong, Z., Shen, W., Du, W., Zhou, Y., & Qi, Z. (2016) A label-free turn-on fluorescence probe for rapidly distinguishing cysteine over glutathione in water solution. Analytical Biochemistry, 500, 1-5.
[20] Huang, S., Wang, L., Huang, C., Hu, B., Su, W., & Xiao, Q. (2016). Graphene quantum dot coupled with gold nanoparticle based “off-on” fluorescent probe for sensitive and selective detection of L-cysteine. Microchimica Acta, 183,1855-1864.
[21] Afshani, J., Badiei, A., Karimi, M., Lashgari, N., & Ziarani, GM. (2016). A single fluorescent sensor for Hg2+ and discriminately detection of Cr3+ and Cr(VI). Journal of Fluorescence, 26(1), 263-270.
[22] Soltani, B., Hosseini sadr, M., & karampour, S. (2020). Phenolate-based ligands and their complexes with samarium and praseodymium: Synthesis, characterization and investigation of fluorescence properties. Applied Chemistry Today. (in persion)
[23] Manzoori, J L., Niaei, N., & Abulhassani, J. (2015). Spectrofluorimetric determination of daunorubicin using terbium-deferasirox as a fluorescence probe. Applied Chemistry Today, 9 (32), 67-74.
[24] Abbasi, P., & Shafaatian, B. (2020). Synthesis, characterization, fluorescence and electrochemical studies of new ferrocene Schiff base ligand containing nitrogen donor atoms and its palladium(II), nickel(II) and copper(II) complexes. Applied Chemistry Today, 15(55), 111-1124. (in persion)
[25] Azadbakht, R., Almasi, T., & Khanabadi, J. (2016). A new fluorescent chemosensor for detection of aluminium ions. Applied Chemistry Today, 11(38), 75-84. (in persion)
[26] Cui, L., Ren, X., Sun, M., Liu, H., & Xia, L. (2021). Carbon dots: Synthesis, properties and applications. Nanomaterials, 11(12), 3419.
[27] Tabaraki ,R., Sadeghi nezhad, N., & Yousefi poor, S. (2018). Green fluorescent sensor based on carbon quantum dots for Cr(VI) determination. Applied Chemistry Today, 13(48), 339-50. (in persion)
[28] Hu, L., Sun, Y., Li, S., Wang, X., Hu, K., Wang, L., Liang, X-J., & Wu, Y. (2014). Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon, 67, 508-513.
[29] De, B., & Karak, N. (2017). Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications. Journal of Materials Chemistry A, 5(5), 1826-1859.
[30] Huang, Q., Bao, Q., Wu, C., Hu, M., Chen, Y., Wang, L., & Chen, W. (2022). Carbon dots derived from Poria cocos polysaccharide as an effective “on-off” fluorescence sensor for chromium (VI) detection. Journal of Pharmaceutical Analysis, 12(1), 104-112.
[31] Atchudan, R., Edison, TNJI., Perumal, S., Vinodh, R., & Lee, YR. (2019). Betel-derived nitrogen-doped multicolor carbon dots for environmental and biological applications. Journal of Molecular Liquids, 296, 111817.
[32] Cao, M., Xia, C., Xia, J., Jiang, D., Yu, C., & Li, H. (2019). A yellow carbon dots-based phosphor with high efficiency for white light-emitting devices. Journal of Luminescence, 206, 97-104.
[33] Ahn, J., Song, Y., Kwon, JE., Lee, SH., Park, KS., Kim, S., Woo, j., Kim, H.(2019). Food waste-driven N-doped carbon dots: Applications for Fe3+ sensing and cell imaging. Materials Science and Engineering: C, 102, 106-112.
[34] Wang, L., & Zhou, HS. (2014). Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Analytical Chemistry, 86(18), 8902-8905.
[35] Aji, MP., Susanto., Wiguna, PA., & Sulhadi. (2017).Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. Journal of Theoretical and Applied Physics, 11(2), 119-126.
[36] Thongsai, N., Tanawannapong, N., Praneerad, J., Kladsomboon, S., Jaiyong, P., & Paoprasert, P. (2019). Real-time detection of alcohol vapors and volatile organic compounds via optical electronic nose using carbon dots prepared from rice husk and density functional theory calculation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 560, 278-287.
[37] D, P., Singh, L., Thakur, A., & Kumar, P. (2019). Green synthesis of glowing carbon dots from Carica papaya waste pulp and their application as a label-freechemo probe for chromium detection in water. Sensors and Actuators B: Chemical, 283, 363-372.
[38] Wang, C., Lan, Y., Yuan, F., Fereja, TH., Lou, B., Han, S., Li, J., & Xu, G. (2020). Chemiluminescent determination of L-cysteine with the lucigenin-carbon dot system. Microchimica Acta, 187(50), 1-6.
[39] Bamdad, F., Khorram, F., Samet, M., Bamdad, K., Sangi, MR., & Allahbakhshi, F. (2016). Spectrophotometric determination of L-cysteine by using polyvinylpyrrolidone-stabilized silver nanoparticles in the presence of barium ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 161, 52-57.
[40] Vieira, IdC., & Fatibello-Filho, O. (1999). L-Cysteine determination using a polyphenol oxidase-based inhibition flow injection procedure. Analytica Chimica Acta, 399(3), 287-293.
[41] Raoof, J-B., Ojani, R., & Beitollahi, H. (2007). L-Cysteine voltammetry at a carbon paste electrode bulk-modified with ferrocenedicarboxylic acid. Electroanalysis, 2007, 19(17), 1822-1830.