[1] Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-Aizari, F. A., & Ansar, M. H., (2018). Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules., 23(1), 134.
[2] Ghasemi, L., Behzad, M., Gharib, A., Arab, A., & Abbasi, A., (2023). A pyrazolone-based dinuclear Cu(II) Schiff-base complex: DFT studies on the rate-determining steps of the tautomerism in the ligand and molecular docking modelling with COVID-19 main protease (6LU7). J. Coord. Chem., 76(5-6), 830-846.
[3] Raman, N., Johnson Raja, S., & Sakthivel, A., (2009). Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. J. Coord. Chem., 62(5), 691-709.
[4] Poormohammadi, E. B., Behzad, M., Abbasi, Z., & Astaneh, S. D. A., (2020). Copper complexes of pyrazolone-based Schiff base ligands: Synthesis, crystal structures and antibacterial properties. J. Mol. Struct., 1205,127603.
[5] Yadav, P., Kumari, M., Jain, Y., Agarwal, M., & Gupta, R., (2020). Antipyrine based Schiff’s base as a reversible fluorescence turn “off-on-off” chemosensor for sequential recognition of Al3+ and F− ions: A theoretical and experimental perspective. Spectrochim. Acta A Mol. Biomol. Spectrosc., 227, 117596.
[6] Mandal, S., Mondal, M., Biswas, J. K., Cordes, D. B., Slawin, A. M., Butcher, R. J., Saha, M., & Saha, N. C., (2018). Synthesis, characterization and antimicrobial activity of some nickel, cadmium and mercury complexes of 5-methyl pyrazole-3yl-N-(2′-methylthiophenyl) methyleneimine, (MPzOATA) ligand. J. Mol. Struct., 1152, 189-198.
[7] Wang, W. Jin, L., & Yu, Z., (2012). A Highly Active Ruthenium(II) Pyrazolyl–Pyridyl–Pyrazole Complex Catalyst for Transfer Hydrogenation of Ketones. Organometallics., 31(15), 5664-5667.
[8] Haiduc, I., (2019). ReviewInverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 1. Five-membered and smaller rings. J. Coord. Chem., 72(13), 2127-2159.
[9] Matada, M. N., & Jathi, K., (2019). Pyrazole-based azo-metal(II) complexes as potential bioactive agents: synthesis, characterization, antimicrobial, anti-tuberculosis, and DNA interaction studies. J. Coord. Chem., 72(12), 1994-2014.
[10] Mandal, S., Das, M., Das, P., Samanta, A., Butcher, R. J., Saha, M., Alswaidan, I. A., L., Rhyman, Ramasami, P., & Saha, N. C., (2019). Synthesis, characterization, DFT and antimicrobial studies of transition metal ion complexes of a new schiff base ligand, 5-methylpyrazole-3yl-N-(2́-hydroxy phenyl amine) methyleneimine, (MPzOAP). J. Mol. Struct., 1178, 100-111.
[11] Marchetti, F., Pettinari, C., Di Nicola, C., Tombesi, A., & Pettinari, R., (2019). Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes. Coord. Chem. Rev., 401, 213069.
[12] Marchetti, F., Pettinari, C., & Pettinari, R., (2005). Acylpyrazolone ligands: Synthesis, structures, metal coordination chemistry and applications. Coord. Chem. Rev., 249 (24), 2909–2945.
[13] Casas, J. S., Garcia-Tasende, M. S., Sanchez, A., Sordo, J., & Touceda, A., (2007). Coordination modes of 5-pyrazolones: A solid-state overview. Coord. Chem. Rev., 251, 1561-1589.
[14] Marchetti, F., Pettinari, R., & Pettinari, C., (2015). Recent advances in acylpyrazolone metal complexes and their potential applications. Coord. Chem. Rev., 303, 1–31.
[15] Berhanu, A.L., Mohiuddin, I., Malik, A.K., Aulakh, J.S., Kumar, V. & Kim, K.H., (2019). A review of the applications of Schiff bases as optical chemical sensors. TrAc Trend. Anal. Chem., 116, 74-91.
[16] Antony, R., Arun, T., & Manickam S. T. D., (2019). A review on applications of chitosan-based Schiff bases. Int. J. Biol. Macromol.,129, 615-633.
[17] Zhang, J., Xu, L. & Wong, W.Y., (2018). Energy materials based on metal Schiff base complexes. Coord. Chem. Rev., 355, 180-198.
[18] Liu, X., Manzur, C., Novoa, N., Celedón, S., Carrillo, D. & Hamon, J.R., (2018). Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coord. Chem. Rev., 357, 144-172.
[19] Kaczmarek, M.T., Zabiszak, M., Nowak, M. & Jastrzab, R., (2018). Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev., 370, 42-54.
[20] Iscen, A., Brue, C.R., Roberts, K.F., Kim, J., Schatz, G.C. & Meade, T.J., (2019). Inhibition of Amyloid-β Aggregation by Cobalt(III) Schiff Base Complexes: A Computational and Experimental Approach. J. Am. Chem. Soc. 141, 16685-16695.
[21] Siegel, R.L., Miller, K.D. & Jemal, A., (2015). Cancer statistics, 2015. Statistics CA: Cancer J. Clin., 65(1), 5-29.
[22] Czarnomysy, R., Surażyński, A., Muszynska, A., Gornowicz, A., Bielawska, A. & Bielawski, K., (2018). A novel series of pyrazole-platinum(II) complexes as potential anti-cancer agents that induce cell cycle arrest and apoptosis in breast cancer cells.
J. Enzym. Inhib. Med. Chem., 33, 1006-1023.
[23] Kachalaki, S., Ebrahimi, M., Khosroshahi, L.M., Mohammadinejad, S. & Baradaran, B., (2016). Cancer chemoresistance; biochemical and molecular aspects: a brief overview.
Eur. J. Pharmaceut. Sci., 89, 20-30.
[24] Palanimurugan, A., & Kulandaisamy A., (2018). DNA, in vitro antimicrobial/anticancer activities and biocidal based statistical analysis of Schiff base metal complexes derived from salicylalidene-4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one and 2-aminothiazole.
J. Organomet. Chem., 861, 263-274.
[25] Palanimurugan, A., Dhanalakshmi, A., Selvapandian, P., & Kulandaisamy A., (2019). Electrochemical behavior, structural, morphological, Calf Thymus-DNA interaction and in-vitro antimicrobial studies of synthesized Schiff base transition metal complexes.
Heliyon, 5(7), e02039.
[26] Hussain, A., AlAjmi, M.F., Rehman, M.T., Amir, S., Husain, F.M., Alsalme, A., Siddiqui, M.A., AlKhedhairy, A.A. & Khan, R.A., (2019). Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies.
Sci. Rep. 9, 5237.
[27] a) Matada, M.N. & Jathi, K., (2019). Pyrazole-based azo-metal(II) complexes as potential bioactive agents: synthesis, characterization, antimicrobial, anti-tuberculosis, and DNA interaction studies.
J. Coord. Chem., 72 (12), 1994-2014. b) Kumar, V., El-Massaoudi, M., Radi, S., Van Hecke, K., Rotaru, A. & Garcia, Y., (2020). Iron(ii) coordination pyrazole complexes with aromatic sulfonate ligands: the role of ether
. New J. Chem., 44(32),13902-13912.
[28] Kacar, S., Unver, H., & Sahinturk, V., (2020). A mononuclear copper(II) complex containing benzimidazole and pyridyl ligands: Synthesis, characterization, and antiproliferative activity against human cancer cells.
Arabian. J. Chem., 13(2), 4310-4323.
[29] Sakai, K., Tomita, Y., Ue, T., Goshima, K., Ohminato, M., Tsubomura, T., Matsumoto, K., Ohmura, K., & Kawakami, K., (2000). Syntheses, antitumor activity, and molecular mechanics studies of cis-PtCl
2(pzH)
2 (pzH=pyrazole) and related complexes. Crystal structure of a novel Magnus-type double-salt [Pt(pzH)
4] [PtCl
4][cis-PtCl
2(pzH)
2]
2 involving two perpendicularly aligned 1D chains.
Inorg. Chim. Acta., 297, 64-71.
[30] Aljuhani, E., Aljohani, M.M., Alsoliemy, A., Shah, R., Abumelha, H.M., Saad, F.A., Hossan, A., Al-Ahmed, Z.A., Alharbi, A., & El-Metwaly, N.M., (2021). Synthesis and characterization of Cu(II)-pyrazole complexes for possible anticancer agents; conformational studies as well as compatible in-silico and in-vitro assays. Heliyon, 7(11), e08485.
[31] Ali, P., Meshram, J., Sheikh, J., Tiwari, V., Dongre, R., & Hadda, T.B., (2012). Predictions and correlations of structure activity relationship of some aminoantipyrine derivatives on the basis of theoretical and experimental ground. Med. Chem. Res., 21, 157-164.
[32] Layek, S., Ganguly, R., & Pathak, D. D., (2018). Unprecedented formation of a μ-oxobridged polymeric copper(II) complex: Evaluation of catalytic activity in synthesis of 5-substituted 1H-tetrazoles. J. Org. Chem., 870, 16-22.
[33] Selvakumar, P. M., Suresh, E., & Subramanian, P. S., (2007). Synthesis, spectral characterization and structural investigation on some 4-aminoantipyrine containing Schiff base Cu(II) complexes and their molecular association. Polyhedron, 26(4), 749-756.
[34] Medzhidov, A. A., Fatullaeva, P. A., Peng, S. M., Ismaiylov, R. G., Lee, G. H., & Garaeva, S. R., (2012). Oxidative dehydrogenation of N-(2-hydroxy-3,5-R1, R2-benzyl)-4-aminoantipyrines in the complexation reaction. Russ. J. Coord. Chem., 38, 126-133.
[35] Raman, N., Johnson Raja, S., & Sakthivel, A., (2009). Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. J. Coord. Chem, 62(5), 691-709.
[36] Liu, Z.C., Yang, Z.Y., Li, T.R., Wang, B.D., Li, Y., & Wang, M.F., (2011). DNA-binding, antioxidant activity and solid-state fluorescence studies of copper(II), zinc(II) and nickel(II) complexes with a Schiff base derived from 2-oxo-quinoline-3-carbaldehyde. Transition Met Chem., 36, 489-498.
[37] Fatullayeva, P. A., Medjidov, A. A., Maharramov, A. M., Gurbanov, A. V., Askerov, R. K., Rahimov, K. Q., Kopylovich, M. N., Mahmudov, K. T., & Pombeiro A. J., (2012). New cobalt(II) and nickel(II) complexes of 2-hydroxy-benzyl derivatives of 4-aminoantipyrine. Polyhedron, 44(1), 72-76.
[38] Parvarinezhad, S., Salehi, M., Kubicki, M., & Khaleghian A., (2021). Unprecedented formation of a μ-oxobridged dimeric copper (II) complex: Evaluation of structural, spectroscopic, and electronic properties by using theoretical studies and investigations biological activity studies of new Schiff bases derived from pyrazolone. Appl. Organomet. Chem., 35(12), e6443.
[39] Parvarinezhad, S., Salehi, Kubicki, M., & Eshaghi Malekshah, R., (2022). Synthesis, characterization, spectral studies and evaluation of noncovalent interactions in co-crystal of μ-oxobridged polymeric copper(II) complex derived from pyrazolone by theoretical studies. J. Mol. Struct., 1260,132780.
[40] Parvarinezhad, S., Salehi, M., Eshaghi Malekshah, R., Kubicki, M., & Khaleghian, A., (2022). Synthesis, characterization, spectral studies two new transition metal complexes derived from pyrazolone by theoretical studies, and investigate anti-proliferative activity. Appl. Organomet. Chem., 36(3), e6563.
[41] Huang, L., & Chen, D.B., (2005). link to html4-{[(1E)- (3,5-Dibromo-2 hydroxyphenyl) methylene] amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one. Act Crystallogr, E., 61(12), o4169-o4170.
[42] Selvakumar, P.M., Suresh, E., & Subramanian, P.S., (2007). Synthesis, spectral characterization and structural investigation on some 4-aminoantipyrine containing Schiff base Cu(II) complexes and their molecular association. Polyhedron., 26(4), 749-756.
[43] Zhang, X., (2011). Syntheses, Crystal Structures and Antibacterial Activities of Two Antipyrine Derivatives. J. Chem. Crystallogr, 41(7), 1044-1048.
[44] Mohamed, S.K., Mague, J.T., Akkurt, M., Albayati, M.R., & Mohamed, A.F., (2017). 4-{(E)-[(2-Hydroxynaphthalen-1-yl) methyl idene] amino}-1,5-dimethyl-2-phenyl-2,3-di hydro-1H-pyrazol-3-one: a new polymorph (β-phase). IUCrData., 2(8), x171166.
[45] Ouennoughi, Y., Eddine Karce, H., Aggoun, D., Lanez, T., Ruiz-Rosas, R., Bouzerafa, B., Ourari, A., Morallon, E., (2017). A novel ferrocenic copper(II) complex Salen-like, derived from 5-chloromethyl-2-hydroxyacetophenone and N ferrocenmethylaniline: Design, spectral approach and solvent effect towards electrochemical behavior of Fc+/Fc redox couple, J. Organ. Chem., 848, 344-351.
[46] Deilami, A.B., Salehi, M., Arab, A. & Amiri, A., (2018). Synthesis, crystal structure, electrochemical properties and DFT calculations of three new Zn(II), Ni(II) and Co(III) complexes based on 5-bromo-2-((allylimino)methyl) phenol Schiff-based ligand. Inorganica Chim. Acta, 476, 93-100.
[47] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., et al., (2009), Gaussian 09 (Linux version).
[48] El-Ayaan, U., El-Metwally, N.M., Youssef, M.M., & El Bialy, S.A., (2007). Perchlorate mixed–ligand copper(II) complexes of β-diketone and ethylene diamine derivatives: Thermal, spectroscopic and biochemical studies. Spectrochim. Acta A., 68, 1278-1286.
[49] Ray, R.K., & Kauffman, G.R., (1990). EPR Spectra and covalency of bis(amidinourea/O-alkyl-1-amidinourea) copper (II) complexes Part II. Properties of the CuN42− chromophore. Inorg. Chim. Acta., 173, 207-214.
[50] Mashat, K.H., Babgi, B.A., Hussien, M.A., Arshad, M.N., & Abdellattif, M.H., (2019). Synthesis, structures, DNA-binding and anticancer activities of some copper(I)-phosphine complexes. Polyhedron, 158, 164-172.
[51] Parvarinezhad, S., Salehi, M., Kubicki, M., & Malekshah, R. E., (2022). Experimental and theoretical studies of new Co(III) complexes of hydrazide derivatives proposed as multi-target inhibitors of SARS-CoV-2. Appl. Organomet. Chem., 36(10), e6836.
[52] Gholivand, K., Barzegari, A., Yousefian, M., Malekshah, R.E., & Faraghi, M., (2023). Experimental and theoretical evaluation of biological properties of a phosphoramide functionalized graphene oxide Biocatal. Agric. Biotechnol, 47, 102612.
[53] Gholivand, K., Sabaghian, M., & Malekshah, R. E., (2021). Synthesis, characterization, cytotoxicity studies, theoretical approach of adsorptive removal and molecular calculations of four new phosphoramide derivatives and related graphene oxide. Bioorg. Chem., 115, 105193.
[54] Ramezanipoor, S., Parvarinezhad, S., Salehi, M., Grześkiewicz, A. M., & Kubicki, M., (2022). Crystal structures, electrochemical properties and theoretical studies of three New Zn(II), Mn(III) and Co(III) Schiff base complexes derived from 2-hydroxy-1-allyliminomethyl-naphthalen. J. Mol. Struct., 1257, 132541.
[55] Sepehrfar, S., Salehi, M., Parvarinezhad, S., Grześkiewicz, A.M., & Kubicki, M., (2023). New Cu(II), Mn(II) and Mn(III) Schiff base complexes cause noncovalent interactions: X-ray crystallography survey, Hirshfeld surface analysis and molecular simulation investigation against SARS-CoV-2. J. Mol. Struct., 1278, 134857.
[56] Saad, F.A., Elghalban, M.G., El‐Metwaly, N.M., El‐Ghamry, H., & Khedr, A.M., (2017). Density functional theory/B3LYP study of nanometric 4-(2,4-dihydroxy-5-formylphen-1-ylazo)-N-(4-methylpyrimidin-2-yl) benzene sulfonamide complexes: Quantitative structure–activity relationship, docking, spectral and biological investigations. Appl. Organomet. Chem., 31, ec3721.
[57] Ali, P., Meshram, J., Sheikh, J., Tiwari, V., Dongre, R., & Hadda, T.B., (2012). Predictions and correlations of structure activity relationship of some aminoantipyrine derivatives on the basis of theoretical and experimental ground. Med. Chem. Res., 21, 157–164.
[58] Fatullayeva, P.A., Medjidov, A.A., Maharramov, A.M., Gurbanov, A.V., Askerov, R.K., Rahimov, K.Q., Kopylovich, M.N., Mahmudov, K.T., & Pombeiro, A.J., (2012). New cobalt(II) and nickel(II) complexes of 2-hydroxy-benzyl derivatives of 4-aminoantipyrine. Polyhedron., 44(1), 72-76.
[59] Loukopoulos, E., Berkoff, B., Abdul‐Sada, A., Tizzard, G.J., Coles, S.J., Escuer, A., & Kostakis, G.E., (2015). A Disk-Like CoII3DyIII4 Coordination Cluster Exhibiting Single Molecule Magnet Behavior. Eur. J. Inorg. Chem., 2015, 2646– 2649.
[60] El-Sonbati, A.Z., El-Mogazy, M.A., Nozha, S.G., Diab, M.A., Abou-Dobara, M.I., Eldesoky, A.M., & Morgan, S.M., (2022). Mixed ligand transition metal(II) complexes: Characterization, spectral, electrochemical studies, molecular docking and bacteriological application. J. Mol. Struc., 1248, 131498.
[61] El-Sonbati, A.Z., Diab, M.A., Morgan, S.M., Abou-Dobara, M.I., & El-Ghettany, A.A., (2020). Synthesis, characterization, theoretical and molecular docking studies of mixed-ligand complexes of Cu(II), Ni(II), Co(II), Mn(II), Cr(III), UO2(II) and Cd(II). J. Mol. Struct., 1200, 127065.
[62] El-Metwally, N.M., El-Shazly, R.M., Gabr, I.M., & El-Asmy, A.A., (2005). Physical and spectroscopic studies on novel vanadyl complexes of some substituted thiosemicarbazides. Spectrochim. Acta A, 61, 1113-1119.
[63] Lever, A.B.P., (1986). Inorganic Electronic Spectroscopy. Elsevier, Amsterdam.
[64] Selvakumar, P. M., Suresh, E., & Subramanian, P. S., (2007). Synthesis, spectral characterization and structural investigation on some 4-aminoantipyrine containing Schiff base Cu(II) complexes and their molecular association. Polyhedron, 26(4), 749-756.
[65] Hökelek, T., Kiliç, Z., ISIKLAN, M., & Hayvali, M., (2002). Crystal structure of 4-{[(1E)- (2-hydroxynaphthyl) methylidene] amino}-1, 5-di methyl-2-phenyl-2, 3-dihydro-1H-pyrazol-3-one. Anal. Sci., 18, 215-216.
[66] Zhou, Y.H., Liu, X.W., Chen, L.Q., Wang, S.Q., & Cheng, Y., (2016). Synthesis, structure and superoxide dismutase-like activity of two mixed-ligand Cu(II) complexes with N, N′-bis(2-pyridylmethyl) amantadine, Polyhedron., 117, 788-794.
[67] Mandal, S., Chatterjee, S., Modak, R., Sikdar, Y., Naskar, B., & Goswami, S., (2014). Syntheses, crystal structures, spectral studies, and DFT calculations of two new square planar Ni(II) complexes derived from pyridoxal-based Schiff base ligands. J. Coord. Chem., 67(4), 699-713.
[68] Grabowski, S.J., (2011). What Is the Covalency of Hydrogen Bonding? Chem. Rev., 111(4), 2597-2625.
[69] Ruiz, A., Pérez, H., Morera-Boado, C., Almagro, L., da Silva, C.C., Ellena, J., de la Vega, J.M.G., Martínez-Álvarez, R., Suárez, M., & Martín, N., (2014). Unusual hydrogen bond patterns contributing to supramolecular assembly: conformational study, Hirshfeld surface analysis and density functional calculations of a new steroid derivative. CrystEngComm., 16(33), 7802-7814.
[70] Shi, L., Zheng, H., Hu, W., Zhou, B., Dai, X., Zhang, Y., Liu, Z., Wu, X., Zhao, C., & Liang, G., (2017). Niclosamide inhibition of STAT3 synergizes with erlotinib in human colon cancer. Onco Targets Ther., 10,1767-1776.