[1] Azmana, M., Mahmood, S., Hilles, A. R., Rahman, A., Arifin, M. A. B., & Ahmed, S. (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International journal of biological macromolecules, 185, 832-848.
[2] Divya, K., & Jisha, M. S. (2018). Chitosan nanoparticles preparation and applications. Environmental chemistry letters, 16, 101-112.
[3] Keshipour, S., Ahmadi, F., Seyyedi, B., & Habibi, E. (2018). Chitosan modified with cobalt (II) as a green catalyst for the oxidation of styrene to styrene oxide. Applied Chemistry, 13(48), 67-74.
[4] Ghafuri, H., Hanifehnejad, P., & Felfelian, Z. (2023). Synthesis and characterization of porphyrin-modified chitosan biopolymer and its application in the degradation of methylene blue under visible light. Applied Chemistry.
[5] de Alvarenga, E. S. (2011). Characterization and properties of chitosan. Biotechnology of biopolymers, 91, 48-53.
[6] Wang, W., Xue, C., & Mao, X. (2020). Chitosan: Structural modification, biological activity and application. International Journal of Biological Macromolecules, 164, 4532-4546.
[7] Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19), 3256.
[8] Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., & Zhao, K. (2020). Chitosan derivatives and their application in biomedicine. International journal of molecular sciences, 21(2), 487.
[9] Ali, A., & Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery. International journal of biological macromolecules, 109, 273-286.
[10] Bansal, V., Sharma, P. K., Sharma, N., Pal, O. P., & Malviya, R. (2011). Applications of chitosan and chitosan derivatives in drug delivery. Advances in Biological Research, 5(1), 28-37.
[11] Guibal, E. (2004). Interactions of metal ions with chitosan-based sorbents: a review. Separation and purification technology, 38(1), 43-74.
[12] Lima, I. S., & Airoldi, C. (2003). Interaction of copper with chitosan and succinic anhydride derivative—a factorial design evaluation of the chemisorption process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 229(1-3), 129-136.
[13] Faúndez, G., Troncoso, M., Navarrete, P., & Figueroa, G. (2004). Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC microbiology, 4, 1-7.
[14] Yin, X., Zhang, X., Lin, Q., Feng, Y., Yu, W., & Zhang, Q. (2004). Metal-coordinating controlled oxidative degradation of chitosan and antioxidant activity of chitosan-metal complex. Arkivoc, 9, 66-78.
[15] Buskes, M. J., & Blanco, M. J. (2020). Impact of cross-coupling reactions in drug discovery and development. Molecules, 25(15), 3493.
[16] Reeves, E. K., Entz, E. D., & Neufeldt, S. R. (2021). Chemodivergence between Electrophiles in Cross‐Coupling Reactions. Chemistry–A European Journal, 27(20), 6161-6177.
[17] Hosseini-Sarvari, M., & Dehghani, A. (2023). Nickel/TiO2-catalyzed Suzuki–Miyaura cross-coupling of arylboronic acids with aryl halides in MeOH/H2O. Monatshefte für Chemie-Chemical Monthly, 1-9.
[18] Kadu, B. S. (2021). Suzuki–Miyaura cross coupling reaction: recent advancements in catalysis and organic synthesis. Catalysis Science & Technology, 11(4), 1186-1221.
[19] Hekmati, M., Yousefi, M., Ziyadi, H., Ghasemi, E., Safari Mehr, P., Veisi, H., & Maleki, B. (2021). catalytic applications of coated nanopalladium particles coated on modified GO by Thymbraspicata extract in Suzuki coupling reactions. Applied Chemistry, 16(58), 233-244.
[20] Matsuo, K., Kuriyama, M., Yamamoto, K., Demizu, Y., Nishida, K., & Onomura, O. (2021). Nickel-Catalyzed Hydrodeoxygenation of Aryl Sulfamates with Alcohols as Mild Reducing Agents. Synthesis, 53(23), 4449-4460.
[21] Kaboudin, B., Salemi, H., Mostafalu, R., Kazemi, F., & Yokomatsu, T. (2016). Pd (II)-β-cyclodextrin complex: Synthesis, characterization and efficient nanocatalyst for the selective Suzuki-Miyaura coupling reaction in water. Journal of organometallic chemistry, 818, 195-199.
[22] Guo, D., Shi, W., & Zou, G. (2022). Suzuki coupling of activated aryltriazenes for practical synthesis of biaryls from anilines. Advanced Synthesis & Catalysis, 364(14), 2438-2442.
[23] Tsubouchi, A., Muramatsu, D., & Takeda, T. (2013). Copper (I)‐Catalyzed Alkylation of Aryl‐and Alkenylsilanes Activated by Intramolecular Coordination of an Alkoxide. Angewandte Chemie International Edition, 52(48), 12719-12722.
[24] Sabounchei, S. J., Hashemi, A., Sedghi, A., Bayat, M., Bagherjeri, F. A., & Gable, R. W. (2017). Pd (II) and Pt (II) complexes of α-keto stabilized sulfur ylide: Synthesis, structural, theoretical and catalytic activity studies. Journal of Molecular Structure, 1135, 174-185.
[25] Ebrahimian, M. R., Tavakolian, M., & Hosseini-Sarvari, M. (2023). From Expired Metformin Drug to Nanoporous N-doped-g-C3N4: Durable Sunlight-Responsive Photocatalyst for Oxidation of Furfural to Maleic acid. Journal of Environmental Chemical Engineering, 109347.
[26] Maeda, K., Matsubara, R., & Hayashi, M. (2021). Synthesis of substituted anilines from cyclohexanones using Pd/C–ethylene system and its application to indole Synthesis. Organic Letters, 23(5), 1530-1534.
[27] Mekahlia, S., & Bouzid, B. (2009). Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond-activity correlation study. Physics Procedia, 2(3), 1045-1053.
[28] Zahedi, S., Ghomi, J. S., & Shahbazi-Alavi, H. (2018). Preparation of chitosan nanoparticles from shrimp shells and investigation of its catalytic effect in diastereoselective synthesis of dihydropyrroles. Ultrasonics Sonochemistry, 40, 260-264.
[29] Da Silva, K. P. (2004). Copper sorption from diesel oil on chitin and chitosan polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 237(1-3), 15-21.
[30] Usman, M. S., Zowalaty, M. E. E., Shameli, K., Zainuddin, N., Salama, M., & Ibrahim, N. A. (2013). Synthesis, characterization, and antimicrobial properties of copper nanoparticles. International journal of nanomedicine, 4467-4479.
[31] Wu, S. H., & Chen, D. H. (2004). Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. Journal of colloid and interface science, 273(1), 165-169.
[32] Affrose, A., Suresh, P., Azath, I. A., & Pitchumani, K. (2015). Palladium nanoparticles embedded on thiourea-modified chitosan: A green and sustainable heterogeneous catalyst for the Suzuki reaction in water. RSC Advances, 5(35), 27533-27539.
[33] Makhubela, B. C., Jardine, A., & Smith, G. S. (2011). Pd nanosized particles supported on chitosan and 6-deoxy-6-amino chitosan as recyclable catalysts for Suzuki–Miyaura and Heck cross-coupling reactions. Applied Catalysis A: General, 393(1-2), 231-241.
[34] Hajipour, A. R., & Abolfathi, P. (2017). Novel triazole-modified chitosan@ nickel nanoparticles: efficient and recoverable catalysts for Suzuki reaction. New Journal of Chemistry, 41(6), 2386-2391.
[35] Veisi, H., Ghadermazi, M., & Naderi, A. (2016). Biguanidine‐functionalized chitosan to immobilize palladium nanoparticles as a novel, efficient and recyclable heterogeneous nanocatalyst for Suzuki–Miyaura coupling reactions. Applied Organometallic Chemistry, 30(5), 341-345.
[36] Veisi, H., Ozturk, T., Karmakar, B., Tamoradi, T., & Hemmati, S. (2020). In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydrate polymers, 235, 115966.
[37] Çalışkan, M., & Baran, T. (2021). Decorated palladium nanoparticles on chitosan/δ-FeOOH microspheres: A highly active and recyclable catalyst for Suzuki coupling reaction and cyanation of aryl halides. International Journal of Biological Macromolecules, 174, 120-133.
[38] Veisi, H., Najafi, S., & Hemmati, S. (2018). Pd (II)/Pd (0) anchored to magnetic nanoparticles (Fe3O4) modified with biguanidine-chitosan polymer as a novel nanocatalyst for Suzuki-Miyaura coupling reactions. International journal of biological macromolecules, 113, 186-194.
[39] Wang, G., Lv, K., Chen, T., Chen, Z., & Hu, J. (2021). Immobilizing of palladium on melamine functionalized magnetic chitosan beads: A versatile catalyst for p-nitrophenol reduction and Suzuki reaction in aqueous medium. International Journal of Biological Macromolecules, 184, 358-368.
[40] Yi, S. S., Lee, D. H., Sin, E., & Lee, Y. S. (2007). Chitosan-supported palladium (0) catalyst for microwave-prompted Suzuki cross-coupling reaction in water. Tetrahedron Letters, 48(38), 6771-6775.
[41] Naghipour, A., & Fakhri, A. (2016). Heterogeneous Fe3O4@Xchitosan-Schiff base Pd nanocatalyst: Fabrication, characterization and application as highly efficient and magnetically-recoverable catalyst for Suzuki–Miyaura and Heck–Mizoroki C–C coupling reactions. Catalysis Communications, 73, 39-45.
[42] Baran, T., & Menteş, A. (2017). Construction of new biopolymer (chitosan)-based pincer-type Pd (II) complex and its catalytic application in Suzuki cross coupling reactions. Journal of Molecular Structure, 1134, 591-598.
[43] Baran, N. Y., Baran, T., & Menteş, A. (2018). Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki-Miyaura coupling reactions. Carbohydrate polymers, 181, 596-604.
[44] Baran, T., Yılmaz Baran, N., & Menteş, A. (2018). Sustainable chitosan/starch composite material for stabilization of palladium nanoparticles: Synthesis, characterization and investigation of catalytic behaviour of Pd@ chitosan/starch nanocomposite in Suzuki–Miyaura reaction. Applied Organometallic Chemistry, 32(2), e4075.