[1] Wagstaff, A.J., Faulds, D., Goa, K.L. (1994) Aciclovir. A reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 47(1) 153-205.
[2] Hosseinzadeh, H. (1390). Potential drug delivery systems from chitosan-g-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogels. Applied Chemistry 6(21), 21-33. in Persian
[3] Lu, Y., Celum, C., Wald, A., Baeten, J. M., Cowan, F., Delany-Moretlwe, S., Hendrix, C. W. (2012). Acyclovir achieves a lower concentration in African HIV-seronegative, herpes simplex virus 2-seropositive women than in non-African populations. Antimicrobial Agents and Chemotherapy, 56(5), 2777–2779.
[4] Adair, J. C., Gold, M., & Bond, R. E. (1994). Acyclovir neurotoxicity: clinical experience and review of the literature. Southern Medical Journal, 87(12), 1227–1231.
[5] Chiou, W.L., & Barve, A. (1998). Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm. Res., 15(11) 1792-1795.
[6] Ayad, M. M., Abdellatef, H. E., El-Henawee, M. M., & El-Sayed, H. M. (2007). Spectrophotometric and spectrofluorimetric methods for analysis of acyclovir and acebutolol hydrochloride. Spectrochim. Acta A, 66(1) 106-110.
[7] Yu, L., & Xiang, B. (2008). Quantitative determination of acyclovir in plasma by near infrared spectroscopy. Microchemical Journal, Devoted to the Application of Microtechniques in All Branches of Science, 90(1), 63–66.
[8] Huidobro, A. L., Rupérez, F. J., & Barbas, C. (2005). LC methods for acyclovir and related impurities determination. Journal of Pharmaceutical and Biomedical Analysis, 37(4), 687–694.
[9] Tzanavaras, P. D., & Themelis, D. G. (2007). High-throughput HPLC assay of acyclovir and its major impurity guanine using a monolithic column and a flow gradient approach. Journal of Pharmaceutical and Biomedical Analysis, 43(4), 1526–1530.
[10] Sasanya, J. J., Abd-Alla, A. M. M., Parker, A. G., & Cannavan, A. (2010). Analysis of the antiviral drugs acyclovir and valacyclovir-hydrochloride in tsetse flies (Glossina pallidipes) using LC-MSMS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 878(26), 2384–2390.
[11] Wang, F., Chen, L., Chen, X., & Hu, S. (2006). Studies on electrochemical behaviors of acyclovir and its voltammetric determination with nano-structured film electrode. Analytica Chimica Acta, 576(1), 17–22.
[12] Ilager, D., Shetti, N. P., Malladi, R. S., Shetty, N. S., Reddy, K. R., & Aminabhavi, T. M. (2021). Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. Journal of Molecular Liquids, 322, 114552.
[13] Wang, P., Gan, T., Zhang, J., Luo, J., & Zhang, S. (2013). Polyvinylpyrrolidone-enhanced electrochemical oxidation and detection of acyclovir. Journal of Molecular Liquids, 177, 129–132.
[14] Shahrokhian, S., Azimzadeh, M., & Amini, M. K. (2015). Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir. Materials Science & Engineering. C, Materials for Biological Applications, 53, 134–141.
[15] Joseph, R., & Kumar, K. G. (2011). Electrochemical sensing of acyclovir at a gold electrode modified with 2-mercaptobenzothiazole-[5,10,15,20-tetrakis-(3-methoxy-4-hydroxyphenyl)porphyrinato]copper(II). Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry, 27(1), 67–72.
[16] Heli, H., Zarghan, M., Jabbari, A., Parsaei, A., & Moosavi-Movahedi, A. A. (2010). Electrocatalytic oxidation of the antiviral drug acyclovir on a copper nanoparticles-modified carbon paste electrode. Journal of Solid State Electrochemistry: Current Research and Development in Science and Technology, 14(5), 787–795.
[17] Dorraji, P. S., & Jalali, F. (2016). Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode. Materials Science & Engineering. C, Materials for Biological Applications, 61, 858–864.
[18] Amouzadeh Tabrizi, M., & Shamsipur, M. (2015). A label-free electrochemical DNA biosensor based on covalent immobilization of salmonella DNA sequences on the nanoporous glassy carbon electrode. Biosensors & Bioelectronics, 69, 100–105.
[19] Zhao, Q.-L., Zhang, Z.-L., Bao, L., & Pang, D.-W. (2008). Surface structure-related electrochemical behaviors of glassy carbon electrodes. Electrochemistry Communications, 10(2), 181–185.
[20] Rahimnejad, M., Zokhtare, R., Moghadamnia, A. A., & Asghary, M. (1397). Fabrication of electrochemical curcumin sensor based on carbon paste electrode. Applied Chemistry, 13(47), 91-104. in Persian
[21] Salavati, H., Taei, M., Rasouli, N., Zohoor, A., & Ashian, G. (1398). Application of Spinel-structured NiCuFe2O4 nanoparticles for determination of naproxen in the presence of acetaminophen. Applied Chemistry, 14(52), 119-134. in Persian
[22] Shetti, N. P., Malode, S. J., & Nandibewoor, S. T. (2012). Electrochemical behavior of an antiviral drug acyclovir at fullerene-C(60)-modified glassy carbon electrode. Bioelectrochemistry (Amsterdam, Netherlands), 88, 76–83.