[1] Wang, X. Y., Li, Y., Liao, W. W., Gu, J., & Li, D. (2008). A new intumescent flame-retardant: preparation, surface modification, and its application in polypropylene. Polymers for Advanced Technologies, 19(8), 1055-1061.
[2] Hollingbery, L. A., & Hull, T. R. (2010). The fire retardant behaviour of huntite and hydromagnesite – A review. Polymer Degradation and Stability, 95(12), 2213-2225.
[3] Hollingbery, L. A., & Hull, T. R. (2012). The fire retardant effects of huntite in natural mixtures with hydromagnesite. Polymer Degradation and Stability, 97(4), 504-512.
[4] Hull, T. R., Witkowski, A., & Hollingbery, L. A. (2011). Fire retardant action of mineral fillers. Polymer Degradation and Stability, 96(8), 1462-1469.
[5] Van der Veen, I., & de Boer, J. (2012). Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 88(10), 1119-1153.
[6] Weil, E. D., & Levchik, S. V. (2015). Flame retardants for plastics and textiles: Practical applications. 2nd Ed., Carl Hanser Verlag GmbH & Co. KG, Munich.
[7] Shaw, S. D, Blum, A., Weber, R., Kannan, K., Rich, D., Lucas, D., Koshland, C. P., Dobraca, D., Hanson, S., & Birnbaum, L. S. (2010). Halogenated flame retardants: Do the fire safety benefits justify the risks? Reviews on Environmental Health, 25(4), 261-305.
[8] Horrocks, A. R., & Price, D. (2001). Fire retardant materials. 1st Ed., Woodhead Publishing, Cambridge, UK.
[9] Grand, A. F., & Wilkie, C. A. (2000). Fire retardancy of polymeric materials. Marcel Dekker, New York.
[10] de Wit, C. A. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46(5), 583-624.
[11] Kausar, A., Rafique, I., Anwar, Z., & Muhammad, B. (2016). Recent developments in different types of flame retardants and effect on fire retardancy of epoxy composite. Polymer-Plastics Technology and Engineering, 55(14), 1512-1535.
[12] Mansouri, G., & Mansouri M. (2020). Photocatalytic activity investigation of ZnO-TiO2 stabilized on ZSM-5 zeolite for Methyl Orange degradation. Journal of Applied Chemistry,15(56), 241-256. (in Persian).
[13] Lasemi, Z., & Sadeghi, B. (2020). BF3.SiO2 nanoparticles: efficient and green catalyst for the one-pot synthesis of pyrano[2,3-d]pyrimidine derivatives. Journal of Applied Chemistry, 15(55), 149-158. (in Persian).
[14] Chaibakhsh, N., & Rahimpour, R. (2021). Fabrication of MnFe2O4/ZnO nanocomposite and its application in photo-fenton process for the removal of surfactant from aqueous solutions. Journal of Applied Chemistry, 16(58), 363-376. (in Persian).
[15] Kilinç, M. (2009). Production and Characterization of Boron Based Additives and the Effect of Flame Retardant Additives on PET Based Composites, Ph.D. Thesis, Middle East Technical University, Ankara.
[16] Qu, H., Wu, W., Xie, J., & Xu, J. (2009). Zinc hydroxystannate-coated metal hydroxides as flame retardant and smoke suppression for flexible poly vinyl chloride. Fire and Materials, 33(4), 201-210.
[17] Morgan, A. B., & Wilkie, C. A. (2007). Flame retardant polymer nanocomposites, Wiley-Interscience, New Jersey.
[18] Wang, X., Pang, H., Chen, W., Lin, Y., Zong, L., & Ning, G. (2014). Controllable fabrication of zinc borate hierarchical nanostructure on brucite surface for enhanced mechanical properties and flame retardant behaviors. ACS Applied Materials & Interfaces, 6(10), 7223-7235.
[19] Gao, Y. H., & Liu, Z. H. (2009). Hydrothermal synthesis and standard molar enthalpy of formation of zinc borate of 4ZnO·B2O3·H2O. Journal of Chemical & Engineering Data, 54(9), 2789-2790.
[20] Feng, C., Zhang, Y., Liang, D., Liu, S., Chi, Z., & Xu, J. (2015). Influence of zinc Borate on the flame retardancy and thermal stability of intumescent flame retardant polypropylene composites. Journal of Analytical and Applied Pyrolysis, 115, 224-232.
[21] Wang, J., Zhang, A.-Q., & Liu, Z.-H. (2015). Thermodynamic properties of two zinc Borates: 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O. The Journal of Chemical Thermodynamics, 82, 88-92.
[22] Shi, X., Yuan, L., Sun, X., Chang, C., & Sun, J. (2008). Controllable synthesis of 4ZnO.B2O3.H2O nano-/microstructures with different morphologies: Influence of hydrothermal reaction parameters and formation mechanism. The Journal of Physical Chemistry C, 112(10), 3558-3567.
[23] Shi, X., Li, M., Yang, H., Chen, S., Yuan, L., Zhang, K., & Sun, J. (2007). PEG-300 assisted hydrothermal synthesis of 4ZnO.B2O3.H2O nanorods. Materials Research Bulletin, 42(9), 1649-1656.
[24] Shi, X., Xiao, Yuan, L., & Sun, J. (2009). Hydrothermal synthesis and characterization of 2D and 3D 4ZnO.B2O3.H2O nano/microstructures with different morphologies. Powder Technology, 189(3), 462-465.
[25] Gönen, M., Balköse, D., & Ülkü, S. (2011). Supercritical ethanol drying of zinc borates of 2ZnO·3B2O3·3H2O and ZnO·B2O3·2H2O. The Journal of Supercritical Fluids, 59, 43-52.
[26] Gürhan, D., Çakal, G.Ö., Eroğlu, İ., & Özkar, S. (2009). Improved synthesis of fine zinc Borate particles using seed crystals. Journal of Crystal Growth, 311(6), 1545-1552.
[27] Shete, A. V., Sawant, S. B., & Pangarkar, V. G. (2004). Kinetics of fluid-solid reaction with an insoluble product: Zinc borate by the reaction of boric acid and zinc oxide. Journal of Chemical Technology and Biotechnology, 79(5), 526-532,.
[28] Baltaci, B. (2010). Synthesis and Charactrization of Nano Zinc Borate and Its Usage as a Flame Retardant for Polymers. M.Sc. Thesis, Middle East Technical University, Ankara.
[29] Genovese, A. & Shanks, R. A. (2007). Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate. Polymer Degradation and Stability, 92(1), 2-13.
[30] Samyn, F., Bourbigot, S., Duquesne, S. & Delobel, R. (2007). Effect of zinc borate on the thermal degradation of ammonium polyphosphate. Thermochimica acta, 456(2), 34-144.
[31] Pawlowski, K. H., Schartel, B., Fichera, M. A. & Jäger, C. (2010). Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene blends. Thermochimica Acta, 498(1), 92-99.
[32] Karrasch, A., Wawrzyn, E., Schartel, B. & Jäger, C. (2010). Solid-state NMR on thermal and fire residues of bisphenol A polycarbonate/silicone acrylate rubber/bisphenol A bis (diphenyl-phosphate)/ (PC/SiR/BDP) and PC/SiR/BDP/zinc borate (PC/SiR/BDP/ZnB)–Part I: PC charring and the impact of BDP and ZnB. Polymer Degradation and Stability, 95(12), 2525-2533.
[33] Ting, C., Jian-Cheng, D., Long-Shuo, W., Fan, Y. & Gang, F. (2008). Synthesis of a new netlike nano zinc borate. Materials Letters, 62(14), 2057-2059.
[34] Altaf, M., Chaudhry, M. A. & Zahid, M. (2003). Study of optical band gap of zinc-borate glasses. Journal of Research (Science), 14(2), 253-259.
[35] Marine, W., Patrone, L., Luk’yanchuk, B., & Sentis, M. (2000). Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation. Applied Surface Science, 154-155, 345-352.