[3] Tran, Q. V., Truong, T. H., Hung, T. Q., Doan, H. V., Pham, X. N., Le, N. T. H., & Nguyen, V. T. (2020). Preparation and testing of ceasium Brønsted ion-exchanged Al-SBA-15 supported heteropoly acid as heterogeneous catalyst in the fructone fragrancy synthesis. Journal of Porous Materials, 27(5), 1745-1754.
[4] Nikseresht, A., & Aderang, E. (2021). Encapsulation of phosphotungstic acid in the nanostructure of metal-organic framework as a heterogonous catalyst used for Fries rearrangement of O-acyloxy benzenes in para-situation. Applied Chemistry, 16(61), 25-38. (in persion)
[5] Mojaverian Kermani, A., Ahmadpour, A., & Rohani Bastami, T. (2021). Synthesis of Dawson Hetero-Polyoxometalate/Activated Carbon Composite and evaluation of its catalytic application for Oxidative removal of Dibenzothiophene. Applied Chemistry, 16(60), 63-78. (in persion)
[6] Taghdiri, M., & Dadari Doolabi, S. (2023). Modification of Magnetic Activated Carbon Nanoparticles with Phosphotungstate for Photocatalytic Application under Sunlight, and Visible, Irradiation. Applied Chemistry, 18(66), 45-62. (in persion)
[7] Popa, A., Sasca, V., Bajuk-Bogdanović, D., & Holclajtner-Antunović, I. (2016). Acidic nickel salts of Keggin type heteropolyacids supported on SBA-15 mesoporous silica. Journal of Porous Materials, 23(1), 211-223.
[8] Kefayati, H., Tajalirad, F., & Shariati, S. (2022). Functionalization of Fe3O4 nanoparticles with propylaminopyridine and its use as an efficient catalyst in the synthesis of novel 4, 8-dihydro-1H-pyrimido [1, 2-a] pyrimidines. Applied Chemistry, 17(63), 123-134. (in persion)
[9] Cheng, T., Zhang, D., Li, H., & Liu, G. (2014). Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chemistry, 16(7), 3401-3427.
[10] Hudson, R., Feng, Y., Varma, R. S., & Moores, A. (2014). Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chemistry,16(10), 4493-4505.
[11] Safari, J., & Zarnegar, Z. (2013). A magnetic nanoparticle-supported sulfuric acid as a highly efficient and reusable catalyst for rapid synthesis of amidoalkyl naphthols. Journal of Molecular Catalysis A: Chemical, 379, 269-276.
[12] Perrella, F. W., Chen, S. F., Behrens, D. L., Kaltenbach, R. F. I., & Seitz, S. P. (1994). Phospholipase C inhibitors: a new class of agents. Journal of Medicinal Chemistry, 37(14), 2232-2237.
[13] Schiller, R., Tichotová, L., Pavlík, J., Buchta, V., Melichar, B., Votruba, I., & Pour, M. (2010). 3, 5-Disubstituted pyranone analogues of highly antifungally active furanones: conversion of biological effect from antifungal to cytostatic. Bioorganic & Medicinal Chemistry, 20(24), 7358-7360.
[14] Bisht, S. S., Jaiswal, N., Sharma, A., Fatima, S., Sharma, R., Rahuja, N., & Tripathi, R. P. (2011). A convenient synthesis of novel pyranosyl homo-C-nucleosides and their antidiabetic activities. Carbohydrate Research, 346(10), 1191-1201.
[15] Ebrahimipour, S. Y., Khosravan, M., Castro, J., Nejad, F. K., Dusek, M., & Eigner, V. (2018). Synthesis and structure elucidation of a novel mixed-ligand Cu (II) Schiff base complex and its catalytic performance for the synthesis of 2-amino-4H-pyrans and tetrahydro-4H-chromenes. Polyhedron, 146, 73-80.
[16] Bihani, M., Bora, P. P., Bez, G., & Askari, H. (2013). Amberlyst A21: A reusable solid catalyst for green synthesis of pyran annulated heterocycles at room temperature. Comptes Rendus Chimie,16(5), 419-426.
[17] Maleki, B., Reiser, O., Esmaeilnezhad, E., & Choi, H. J. (2019). SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@ DNH (CH2)4SO3H): Synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines. Polyhedron, 162, 129-141.
[18] Kharbangar, I., Rohman, M. R., Mecadon, H., & Myrboh, B. (2012). KF-Al2O3 as an Efficient and Recyclable Basic Catalyst for the Synthesis of 4H-Pyran-3-carboxylates and 5-Acetyl-4H-pyrans. Int. Journal of Organic Chemistry, 2(3), 282.
[19] Rakhtshah, J., Salehzadeh, S., Zolfigol, M. A., & Baghery, S. (2017). Mn (III)–pentadentate Schiff base complex supported on multi‐walled carbon nanotubes as a green, mild and heterogeneous catalyst for the synthesis of tetrahydrobenzo [b] pyrans via tandem Knoevenagel–Michael cyclocondensation reaction. Applied organometallic chemistry, 31(9), e3690.
[20] Heravi, M. M., Mirzaei, M., Beheshtiha, S. Y. S., Zadsirjan, V., Mashayekh Ameli, F., & Bazargan, M. (2018). H5BW12O40 as a green and efficient homogeneous but recyclable catalyst in the synthesis of 4H‐Pyrans via multicomponent reaction. Applied organometallic chemistry, 32(9), e4479.
[21] Honarmand, M., Tzani, A., & Detsi, A. (2019). Synthesis of novel multi-OH functionalized ionic liquid and its application as dual catalyst-solvent for the one-pot synthesis 4H-pyrans. Journal of molecular liquids, 290, 111358.
[22] Balaji, S., Guda, R., Mandal, B. K., Kasula, M., Ubba, E., & Khan, F. R. N. (2021). Green synthesis of nano-titania (TiO2 NPs) utilizing aqueous Eucalyptus globulus leaf extract: applications in the synthesis of 4 H-pyran derivatives. Research on Chemical Intermediates, 47, 3919-3931.
[23] Khoshdel, M. A., Shirini, F., Langarudi, M. S. N., Zabihzadeh, M., & Biglari, M. (2021). Three-component synthesis of 4 H-pyran scaffolds accelerated by a gabapentin-based natural deep eutectic solvent. New Journal of Chemistry, 45(6), 3138-3149.
[24] Shabani, N., Heravi, M. R. P., Babazadeh, M., Ghasemi, E., Amini, M., & Robertson, C. (2022). 2-Aminoisoindoline-1, 3-Dione-Functionalized Fe3O4/Chloro-Silane Core-Shell Nanoparticles as Reusable Catalyst: An Efficient Heterogeneous Magnetic Nanoparticles for Synthesis of 4 H-Pyran Derivatives through Multicomponent Reaction. Polycyclic Aromatic Compounds, 42(7), 4561-4577.
[25] Heravi, M. R. P., Aghamohammadi, P., & Vessally, E. (2022). Green synthesis and antibacterial, antifungal activities of 4H-pyran, tetrahydro-4H-chromenes and spiro2-oxindole derivatives by highly efficient Fe3O4@ SiO2@ NH2@ Pd (OCOCH3)2 nanocatalyst. Journal of Molecular Structure, 1249, 131534.
[26] Zeng, Q., Huang, X., Liu, M., Yu, Z., & Xiao, Y. (2022). Synthesis of Trifluoromethylated 4 H-Pyran and 4 H-Thiopyran via Divergent Reaction of β-CF3-1, 3-Enynes with β-Ketothioamides. Organic Letters, 24(44), 8186-8191.
[27] Maleki, R., Koukabi, N., & Kolvari, E. (2018). Fe3O4‐Methylene diphenyl diisocyanate‐guanidine (Fe3O4–4, 4′‐MDI‐Gn): A novel superparamagnetic powerful basic and recyclable nanocatalyst as an efficient heterogeneous catalyst for the Knoevenagel condensation and tandem Knoevenagel‐Michael‐cyclocondensation reactions. Applied organometallic chemistry, 32(1), e3905.
[28] Pizzio, L. R., & Blanco, M. N. (2003). Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Applied Catalysis A: General, 255(2), 265-277.
[29] Alharbi, K., Alharbi, W., Kozhevnikova, E. F., & Kozhevnikov, I. V. (2016). Deoxygenation of ethers and esters over bifunctional Pt–heteropoly acid catalyst in the gas phase. ACS catalysis, 6(3), 2067-2075.