[1] Hatefi-Mehrjardi, A., Beheshti-Marnani, A., & Askari, N. (2019). Cu+ 2 loaded" zeolite A"/nitrogen-doped graphene as a novel hybrid for simultaneous voltammetry determination of carbamazepine and dopamine. Materials Chemistry and Physics, 225, 137-144.
[2] de Fatima Ulbrich, K., Winiarski, J. P., Jost, C. L., & de Campos, C. E. M. (2020). Mechanochemical synthesis of a Ni3-xTe2 nanocrystalline composite and its application for simultaneous electrochemical detection of dopamine and adrenaline. Composites Part B: Engineering, 183, 107649.
[3] Ozoemena, O. C., Shai, L. J., Maphumulo, T., & Ozoemena, K. I. (2019). Electrochemical sensing of dopamine using onion-like carbons and their carbon nanofiber composites. Electrocatalysis, 10, 381-391.
[4] Thamilselvan, A., Manivel, P., Rajagopal, V., Nesakumar, N., & Suryanarayanan, V. (2019). Improved electrocatalytic activity of Au@ Fe3O4 magnetic nanoparticles for sensitive dopamine detection. Colloids and Surfaces B: Biointerfaces, 180, 1-8.
[5] Tyszczuk-Rotko, K., Jaworska, I., & Jędruchniewicz, K. (2019). Application of unmodified boron-doped diamond electrode for determination of dopamine and paracetamol. Microchemical Journal, 146, 664-672.
[6] Feng, X., Zhang, Y., Zhou, J., Li, Y., Chen, S., Zhang, L., ... & Yan, X. (2015). Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale, 7(6), 2427-2432.
[7] Hong, S., Lee, L. Y. S., So, M. H., & Wong, K. Y. (2013). A dopamine electrochemical sensor based on molecularly imprinted poly (acrylamidophenylboronic acid) film. Electroanalysis, 25(4), 1085-1094.
[8] Mazloum‐Ardakani, M., Sheikh‐Mohseni, M. A., & Benvidi, A. (2011). Electropolymerization of thin film conducting polymer and its application for simultaneous determination of ascorbic acid, dopamine and uric acid. Electroanalysis, 23(12), 2822-2831.
[9] ARDAKANI, M., SHEIKHMOHSENI, M. A., Beitollahi, H., Benvidi, A., & Naeimi, H. (2011). Simultaneous determination of dopamine, uric acid, and folic acid by a modified TiO_2 nanoparticles carbon paste electrode. Turkish Journal of Chemistry, 35(4), 573-585.
[10] Mazloum-Ardakani, M., Naser-Sadrabadi, A., Sheikh-Mohseni, M. A., Benvidi, A., Naeimi, H., & Karshenas, A. (2013). An electrochemical sensor based on carbon nanotubes and a new Schiff base for selective determination of dopamine in the presence of uric acid, folic acid, and acetaminophen. Ionics, 19, 1663-1671.
[11] Mazloum-Ardakani, M., Dehghani-Firouzabadi, A., Benvidi, A., Mirjalili, B. B. F., & Mirhoseini, M. A. (2015). Characterization of new molecular self-assembled monolayers on gold electrode by QCM, EIS, SEM and CV techniques: application for electrocatalytic determination of dopamine in the presence of acetaminophen. Journal of the Iranian Chemical Society, 12, 677-685.
[12] Li, X., Tian, A., Wang, Q., Huang, D., Fan, S., Wu, H., & Zhang, H. (2019). An electrochemical sensor based on platinum nanoparticles and mesoporous carbon composites for selective analysis of dopamine. International Journal of Electrochemical Science, 14(1), 1082-1091.
[13] Qiu, Z., Yang, T., Gao, R., Jie, G., & Hou, W. (2019). An electrochemical ratiometric sensor based on 2D MOF nanosheet/Au/polyxanthurenic acid composite for detection of dopamine. Journal of Electroanalytical Chemistry, 835, 123-129.
[14] Song, Y., Han, J., Xu, L., Miao, L., Peng, C., & Wang, L. (2019). A dopamine-imprinted chitosan Film/Porous ZnO NPs@ carbon Nanospheres/Macroporous carbon for electrochemical sensing dopamine. Sensors and Actuators B: Chemical, 298, 126949.
[15] Yang, J., Hu, Y., & Li, Y. (2019). Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection. Biosensors and Bioelectronics, 135, 224-230.
[16] Goyal, R. N., Gupta, V. K., Bachheti, N., & Sharma, R. A. (2008). Electrochemical sensor for the determination of dopamine in presence of high concentration of ascorbic acid using a fullerene‐C60 coated gold electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 20(7), 757-764.
[17] Hassaninejad-Darzi, S. K., & Shajie, F. (2018). Simultaneous determination of acetaminophen, pramipexole and carbamazepine by ZSM-5 nanozeolite and TiO2 nanoparticles modified carbon paste electrode. Materials Science and Engineering: C, 91, 64-77.
[18] Daneshvar, L., Rounaghi, G., E'shaghi, Z., Chamsaz, M., & Tarahomi, S. (2016). Electrochemical determination of carbamazepin in the presence of paracetamol using a carbon ionic liquid paste electrode modified with a three-dimensional graphene/MWCNT hybrid composite film. Journal of Molecular Liquids, 215, 316-322.
[19] Dhanalakshmi, N., Priya, T., & Thinakaran, N. (2018). Highly electroactive Ce-ZnO/rGO nanocomposite: ultra-sensitive electrochemical sensing platform for carbamazepine determination. Journal of Electroanalytical Chemistry, 826, 150-156.
[20] Lavanya, N., Sekar, C., Ficarra, S., Tellone, E., Bonavita, A., Leonardi, S. G., & Neri, G. (2016). A novel disposable electrochemical sensor for determination of carbamazepine based on Fe doped SnO2 nanoparticles modified screen-printed carbon electrode. Materials Science and Engineering: C, 62, 53-60.
[21] Maashhadizadeh, M. H., Refahati, R., & Amereh, E. (2013). Ag/TiO2 nanocomposite modified carbon paste electrode used to differential pulse voltammetric determination of carbamazepine. Carbon, 22, 27.
[22] Kalanur, S. S., Seetharamappa, J., & Prashanth, S. N. (2010). Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode. Colloids and Surfaces B: Biointerfaces, 78(2), 217-221.
[23] Zhang, Y., He, P., & Hu, N. (2004). Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochimica Acta, 49(12), 1981-1988.
[24] Mashhadizadeh, M. H., & Afshar, E. (2013). Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochimica acta, 87, 816-823.
[25] Chen, C., Wang, Y., Ding, S., Hong, C., & Wang, Z. (2019). A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine. Microchemical Journal, 147, 191-197.
[26] Beitollahi, H., & Sheikhshoaie, I. (2012). Novel nanostructure-based electrochemical sensor for simultaneous determination of dopamine and acetaminophen. Materials Science and Engineering: C, 32(2), 375-380.
[27] Saleh Ahammad, A. J., Lee, J. J., & Rahman, M. A. (2009). Electrochemical sensors based on carbon nanotubes. sensors, 9(4), 2289-2319.
[28] Maduraiveeran, G., Sasidharan, M., & Ganesan, V. (2018). Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosensors and Bioelectronics, 103, 113-129.
[29] Shamsipur, M., Najafi, M., & Hosseini, M. R. M. (2010). Highly improved electrooxidation of glucose at a nickel (II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry, 77(2), 120-124.
[30] Zhang, W., Zhang, X., Zhang, L., & Chen, G. (2014). Fabrication of carbon nanotube-nickel nanoparticle hybrid paste electrodes for electrochemical sensing of carbohydrates. Sensors and Actuators B: Chemical, 192, 459-466.
[31] Laviron, E. (1974). Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 52(3), 355-393.
[32] Ezoji, H., Rahimnejad, M., & Najafpour-Darzi, G. (2020). Advanced sensing platform for electrochemical monitoring of the environmental toxin; bisphenol A. Ecotoxicology and Environmental Safety, 190, 110088.
[33] Setoudeh, N., Jahani, S., Kazemipour, M., Foroughi, M. M., & Nadiki, H. H. (2020). Zeolitic imidazolate frameworks and cobalt-tannic acid nanocomposite modified carbon paste electrode for simultaneous determination of dopamine, uric acid, acetaminophen and tryptophan: Investigation of kinetic parameters of surface electrode and its analytical performance. Journal of Electroanalytical Chemistry, 863, 114045.
[34] Tajik, S., Beitollahi, H., & Aflatoonian, M. R. (2019). A novel dopamine electrochemical sensor based on La3+/ZnO nanoflower modified graphite screen printed electrode. Journal of Electrochemical Science and Engineering, 9(3), 187-195.
[35] Mohammadi, S., Taher, M. A., & Beitollahi, H. (2020). Treated screen printed electrodes based on electrochemically reduced graphene nanoribbons for the sensitive voltammetric determination of dopamine in the presence of uric acid. Electroanalysis, 32(9), 2036-2044.
[36] Iranmanesh, T., Foroughi, M. M., Jahani, S., Zandi, M. S., & Nadiki, H. H. (2020). Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta, 207, 120318.
[37] Haghnegahdar, N., Abbasi Tarighat, M., & Dastan, D. (2021). Curcumin-functionalized nanocomposite AgNPs/SDS/MWCNTs for electrocatalytic simultaneous determination of dopamine, uric acid, and guanine in co-existence of ascorbic acid by glassy carbon electrode. Journal of Materials Science: Materials in Electronics, 32(5), 5602-5613.