سنتز مشتقات H 1- پیرازولو[1،2-b]فتالازین-10 ، 5-دی‌اون با استفاده از نانوکاتالیزگر مغناطیسی هرسنیت

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد رشت

چکیده

پیرازولوفتالازین‌ها و مشتقات آ‌‌‌ن‌ها به عنوان یک ماده با فعالیت شیمیایی و زیستی متنوع شناخته شده‌اند. این ترکیبات خواص دارویی متنوعی مثل ضد باکتری، ضد ویروس، ضد انعقاد خون و ضد سرطان دارند. از سوی دیگر نانوکاتالیزگرها به‌دلیل داشتن سطح تماس زیاد، قابل بازیافت بودن و جداسازی آسان در سنتز ترکیبات آلی بسیار مورد توجه هستند. در این مطالعه، تهیه مشتقات پیرازولوفتالازین از واکنش مشتقات آلدهیدهای آروماتیک، فتال هیدرازید و مالونونیتریل با استفاده از نانوکاتالیزگر هرسنیت مطالعه شد و محصولات واکنش در مدت زمان 90-45 دقیقه و با بازده 97-90% تهیه شدند. کوتاه بودن زمان واکنش ها و بازده بالای محصولات تشکیل شده بیانگر کارآیی بالای نانوکاتالیزگر مورد استفاده است. ساختار نانوکاتالیزگر هرسنیت با استفاده از روش‌های FT-IR و SEM و الگوی پراش پرتو ایکس بررسی شد. نتایج ریخت شناسی سطح نانوکاتالیزگر نشان می‌دهد که نانوذرات کروی شکل بوده و سایز ذرات بین 80-49 نانومتر می‌باشد. بررسی میزان خصلت مغناطیسی کاتالیزگر با آنالیز VSM نشان دهنده خصلت مغناطیسی مطلوب نانوکاتالیزگر هرسنیت برای جداسازی آن با میدان مغناطیسی خارجی می‌باشد. عملکرد آسان، بازده بالا، استفاده مجدد از کاتالیزگر برای چند مرتبه، زمان کوتاه واکنش و جداسازی آسان کاتالیزگر با استفاده از یک مگنت خارجی از مهمترین مزایای روش ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis of 1H-pyrazolo[1,2-b]phthalazine-5, 10-dione derivatives using Hercynite magnetic nanocatalyst

نویسندگان [English]

  • Zahra Paknejadi
  • Hassan Kefayati
Chemistry department, Islamic Azad University, Rasht, Branch
چکیده [English]

Pyrazolophthalazines and their derivatives are known as a substance with diverse chemical and biological activity. These compounds have various medicinal properties such as anti-bacterial, anti-viral, anti-coagulant and anti-cancer. In this research synthesis of Pyrazolo-phthalazine derivatives by reaction of aromatic aldehyde derivatives, Phthalic hydrazide and malononitrile in the presence of Hercynite as nano-catalyst were studied and the products were obtained in 45-90 minutes with yield of 90-97%. The structure of Hercynite nanocatalyst was investigated using FT-IR and SEM methods and X-ray diffraction pattern. The results of the morphology of the nanocatalyst surface show that the nanoparticles are spherical and the size of the particles is between 49-80 nm. Investigating the magnetic property of the catalyst with VSM analysis shows the favorable magnetic property of Hercynite nanocatalyst for its separation with an external magnetic field. Easy operation, high efficiency, reuse of the catalyst for several times, short reaction time and easy separation of the catalyst using an external magnet are the most important advantages of the presented method.

کلیدواژه‌ها [English]

  • Hercynite
  • malononitrile
  • pyrazolo-phthalazine
  • nano-catalyst
  • phthalic hydrazide
[1] Sridhara, A.M., Reddy, K.R.V., Keshavayya, J., Vadiraj, S.G., Bose, P., Ambika, D.S., Raju, C.K., Shashidhara, S., & Raju, N.H. (2011). Synthesis, antimicrobial and cytotoxicity studies of some novel phthalazine-methoxyacrylate derivatives. Journal of Pharmacy Research, 4(2), 496-500.
[2] Awadallah, F.M., Saleh, D.O., & El-Eraky, W. (2012). Synthesis, vasorelaxant activity, and molecular modeling study of some new phthalazine derivatives. European Journal of Medicinal Chemistry, 52(1), 14-21.
[3] Al-Assar, F., Zelenin, K. N., Lesiovskaya, E. E., Bezhan, I. P., & Chakchir, B. A. (2002). Synthesis and pharmacological activity of 1-hydroxy-, 1-amino-, and 1-hydrazino-substituted 2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones and 2,3-dihydro-1H-pyrazolo[1,2-b]phthalazine-5,10-diones. Pharmaceutical Chemistry Journal, 36, 598–603.
[4] Lashkari, M., Heydari, R., & Mohamadpour, F. (2016). A facile approach for one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives catalyzed by ZrCl4 as an efficient catalyst under solvent-free conditions. Iranian Journal of Science and Technology, Transaction A, 1-7.
[5] El-Azm, F.S.A., Mahmoud, M.R., & Hekal, M.H. (2015). Recent developments in chemistry of phthalazines. Organic Chem Current Research, 4, 1-12.
[6] Kim, J.S., Rhee, H.K., Park , H.J., Lee , S.K., Lee , C.O., & Park Choo, H.Y. (2008). Synthesis of 1-/2-substituted-[1,2,3]triazolo[4,5-g]phthalazine-4,9-diones and evaluation of their cytotoxicity and topoisomerase II inhibition. Bioorganic & Medicinal Chemistry, 16 (8), 4545-4550.
[7] Li, J., Zhau, Y.F., Yuan, X.Y., Gong, J.X.X.I., & Gong, P. (2006). Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines. Molecules, 11(7), 574- 582.
[8] Badiger, K. B., Sannegowda, L. K., & Kamanna, K. (2023). An agro-waste catalyzed facile synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives: Evaluation of antioxidant and electrochemical studies. Polycyclic Aromatic Compounds, https://doi.org/10.1080/10406638. 2023. 2186445.
[9] Ghahremanzadeh, R., Imani Shakibaei, Gh., & Bazgir, A. (2008). An efficient one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives. Synlett, 8, 1129-1132.
[11] K. Jadhav, Ch., S. Nipate, A., V. Chate, A., V. Kulkarni, M., & H. Gill, Ch. (2023). Microwave-assisted chemistry: New synthetic application for the rapid construction of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives in diisopropyl ethyl ammonium acetate. Polycyclic Aromatic Compounds, https://doi.org/10.1080/10406638.2021.2021252.
[12] Nabid, M. R., Tabatabaei Rezaei, S. J., Ghahremanzadeh, R., & Bazgir, A. (2010). Ultrasound-assisted one-pot, three-component synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. Ultrasonics Sonochemistry, 17 (1), 159-161.
[13] Roy, H.N., Rana, M., Al Munsur, A.Z., Lee, K.-I., & Sarker, A.K. (2016). Efficient and convenient synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives mediated by L-proline. Synthetic Communications, 46 (16), 1370-1376.
[14] Abdesheikhi, M., & Karimi-jaberi, Z. (2015). Four-component synthesis of 3-amino-1-aryl-5,10-dioxo-1H-pyrazolo[1,2-b]phthalazine-2-carbonitrile derivatives promoted by potassium carbonate. Journal of Chemical Research, 39, 482-483.
[15] Wang, W., Cong-Hao, L., Yi, Y., Xiao-Jun, L., & Hong-Yun, G. (2016). An improved procedure for the three-component synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives using basic ionic liquid. Journal of Chemistry Research, 40 (6), 354–357.
[16] Mosaddegh, E., & Hassankhani, A. (2011). A rapid, one-pot, four-component route to 2H-indazolo[2, 1-b]phthalazine-triones. Tetrahedron Lett, 52 (4), 488-490.
[17] K. Jadhav, Ch., S. Nipate, A., V. Chate, A., M. Kamble, P., A. Kadam, G., S. Dofe, V., M. Khedkar, V.,  & H. Gill, Ch. (2021). Room temperature ionic liquid promoted improved and rapid synthesis of highly functionalized imidazole and evaluation of their inhibitory activity against human cancer cells. Journal of Chinese Chemistry Society, 68 (6), 1067-1081.
[18] Ghorbani-Vaghei, R., Noori, S.,  Toghraei-Semiromia, Z., & Salimi, Z. (2014). One-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions. RSC Advances, 4, 47925-47928.
[19] Nesarvand, M., Azarifar, D., & Ebrahimiasl, H. (2021). One‐pot and green synthesis 1H-pyrazolo[1,2-b]phthalazine-5,10-dione and dihydropyrano[3,2-c]chromene derivatives by Fe3O4@SiO2-imine/phenoxy-Cu(II) as an efficient and reusable catalyst. Research Chemical Intermediate, 47, 3629- 3644.
[20] Patil, S.,  Mane, A., & Dhongade Desai, S. (2019). CuO nanoparticles as a reusable catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions. Journal of the Iranian Chemical Society, 16, 1665–1675.
[21] Das, D. (2016). Multicomponent reactions in organic synthesis using copper-based nanocatalysts. Chemistry Select, 1 (9), 1959-1980.
[22] Azarifar, A., Nejat-Yami, R., & Azarifar, D. (2013). Nano-ZnO: an efcient and reusable catalyst for one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and pyrazolo[1,2-a][1, 2, 4] triazole 1,3-diones. Journal of the Iranian Chemical Society, 10, 297–306.
[23] Ziarani, G.M., Mohtasham, N. H., Badiei, A., & Lashgari, N. (2014) Efficient one-pot solvent-free synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones catalyzed by Sulfonic acid functionalized nanoporous Silica (SBA-Pr-SO3H). Journal of Chinese Chemistry Society, 61, 990–9944.
[24] Nasab, N. H., & Safari, J. (2019). Synthesis of a wide range of biologically important spiropyrans and spiroacenaphthylenes, using NiFe2O4@ SiO2@ melamine magnetic nanoparticles as an efficient, green and reusable nanocatalyst. Journal of Molecular Structure, 1193, 118–24.
[25] Ansari, M.D., Sagir, H., Yadav, V.B., Yadav, N., Verma, A., Shakya, S., Singh, M., & Siddiqui, I. R. (2022). Magnetically recoverable Fe3O4 nanocatalyst for the synthesis of biodynamically significant 1H-pyrazolo[1,2-b]phthalazine-5,10-diones derivatives and its DFT study. Molecular Diversity, https://doi.org/10.1007/s11030-022-10532-3. 
[26] Sharma, N., Chowhan, B., Gupta, M., & Kousera, M. (2022). NiFe2O4@B,N,F-tridoped CeO2 (NFTDNC): a mesoporous nanocatalyst in the synthesis of pyrazolopyranopyrimidine and 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives and as an adsorbent. Journal of Chemical Society, Dalton Trans., 51, 13795-13807.
[27] Mirani Nezhad, Sh., Ali Pourmousavi, S.,  & Nazarzadeh Zare, E. (2022). Superparamagnetic poly(anilinephenylenediamine)@Fe3O4 nanocomposite as an efficient heterogeneous catalyst for the synthesis of 1H-pyrazolo[1,2-a]pyridazine-5,8-diones & 1H-pyrazolo[1,2-b]phthalazine-5, 10-diones derivatives. Current Organic Synthesis, 19 (2), 246-266.
[28] B. Chalaki, S., & Akhlaghinia, B. (2020). CuII Anchored onto the Magnetic Talc: A new magnetic nanostructured catalyst for the one-pot gram-scale synthesis of 1H-pyrazolo[1,2-b] phthalazine-5,10-dione derivatives. Chemistry Select, 5 (35), 11010-11019.

[29] Paesano, A., Matsuda, C.K., & Hallouche, B. (2003). Synthesis and characterization of Fe-Al2O3 composites. Journal of Magnetism and Magnetic Materials 264, 264-274.

[30] Botta, P.M., & Mercader, R.C. (2003). Synthesis of Fe–FeAl2O4–Al2O3 by high-energy ball milling of Al–Fe3O4 mixtures. Scripta Materialia48, 1093-1098.

[31] Barbara, L., Bernardo, C., & Antonio, M. (2009). Closure temperatures of intracrystalline ordering in anatectic and metamorphic hercynite, Fe2+Al2O4. American Mineralogist, 94, 657-665.
[32] Mohammadi, M., & Ghorbani-Choghamarani, A. (2022). Synthesis and characterization of novel hercynite@sulfuric acid and its catalytic applications in the synthesis of polyhydroquinolines and 2,3-dihydroquinazolin-4(1H)-ones. RSC Advances. 12, 2770-2787.
[33] Barazandehdoust, M., Mamaghani, M., & Kefayati, H. (2022). A novel cobalt organic-inorganic hybrid magnetic nanocatalyst for convenient four-component synthesis of 3,4-dihydropyridones. Iranian Journal of Catalysis, 12 (4), 417-429.
[34] Keyhani, A., Nikpassand, M., Zare Fekri, L., & Kefayati, H. (2022). Green synthesis of novel azo-linked 2-aryl-quinazolinones using Fe3O4@ SP@ TA nanoparticle. Journal of Cluster Science, 33 (4), 1589-1599
[36] Keyhani, A., Nikpassand, M., Zare Fekri, L., & Kefayati, H. (2022). Green synthesis of novel azo-linked 2-aryl-quinazolinones using of NiFe2O4@SP@GA nanoparticle. Polycyclic Aromatic Compounds, 42 (5), 2607-2616.
[37] N. Koukabi, S. Otokesh, A. Amoozadeh, E. Kolvari, Journal of Applied Chemistry, 9 (2014) 31.
[38] E. Kolvari, A. Amoozadeh, S. Azhari, S. Otokesh, Journal of Applied Chemistry, 9 (2014) 79.
[39] Tabrizian, E., Amoozadeh, A. (2014). Synthesis of xanthene derivatives based on (H3PW12O40) bis (substituted-benzylidene) cycloalkanones using tangstophosphoric acid under solvent-free conditions. Applied Chemistry Today, 9 (30) 23-30. (in Persian)
[40] Kolvari, E., & Mirzaeeyan, M. (2012). Oxidation of alcohols to corresponding carbonyl compounds using aluminum nitrate nine hydrate (Al (NO3) 3.9 H2O) under solvent-free conditions. Applied Chemistry Today7(24), 43-51. (in Persian)
[41] M. Bitaraf, A. Amoozadeh, Journal of Applied Chemistry, 10 (2015) 109.
[42] Buchebner, H. H. (1999). Magnesia–Hercynite Bricks: An innovative burnt basic refractory. Unitecr, 427-432.
[44] Subramani Maheswari, C., Tamilselvi, V., Ramesh, R., & Lalitha, A. (2020). An organocatalytic cascade synthesis of diverse 1H-pyrazolo[1,2-b]phthalazine-2-carboxamide,1H-pyrazolo[1,2-b]phthalazine, 4H-pyrano[2,3-c]pyrazole and 4H-benzo[g]chromenes via multicomponent reactions. Organic Preparations and Procedures, 52(1), 22-36.
[45] Safaei-Ghomi, J., Shahbazi-Alavi, H., Ziarati, A., Teymuri, & Saberi, M. R. (2014). A highly flexible green synthesis of 1H-pyrazolo[1,2-d] phthalazine-5,10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions. Chinese Chemical Letter, 25, 401-405.
[46] Kalhor, M., Orouji, Z., & Khalaj, M. (2022). 4-Methylpyridinium chloride ionic liquid grafted on Mn@zeolite-Y: Design, fabrication and performance as a novel multi-functional nanocatalyst in the four-component synthesis of pyrazolophthalazine-diones. Microporous Mesoporous Material, 329, 111498-111510.
[47] Mohamadpour, F. (2020). Carboxymethyl cellulose (CMC) as a recyclable green catalyst promoted eco-friendly protocol for the solvent-free synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10- dione derivatives. Polycyclic Aromatic Compound, 42(4), 1091-1102.