توسعه و بهینه‌سازی سنتز MIL-101(Cr) به روش فراصوت با استفاده از روش سطح پاسخ

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه شیمی، دانشگاه پیام نور،تهران، ایران.

چکیده

چارچوب MIL-101(Cr) یکی از موردمطالعه‌ترین چارچوب‌های آلی-فلزی با پایه کروم است. این چارچوب از یون کروم و لیگاند ترفتالیک‌اسید تشکیل‌شده‌است. در این مطالعه، به‌منظور توسعه روش‌های کارآمد سنتز جایگزین، از روش فراصوت سنتز استفاده‌شد. بهینه‌سازی بازده این چارچوب آلی-فلزی بامطالعه دو پارامتر اساسی، یعنی دما و زمان، با استفاده از روش سطح پاسخ انجام‌شد. تأثیر این پارامترها از طریق طراحی مرکب مرکزی (CCD) ، بهینه‌شده و رفتار آن‌ها با استفاده از آنالیز واریانس مورد تجزیه ‌و تحلیل قرار‌گرفت. یک معادله درجه دوم برای پیش‌بینی رفتار فرآیند در شرایط مختلف با R2 برابر با 9998/0 ارائه‌شده‌است. که نشان‌دهنده همپوشانی مناسب داده‌های تجربی و مقادیر پیش‌بینی‌شده توسط مدل ارائه‌شده، برای میزان بهینه بازده است. پارامترهای حاصل از آنالیز واریانس، نشان‌می‌دهند که زمان اثر معنی‌دارتر و نقش مؤثرتری در مدل ایفا‌می‌کند. ساختار نانوترکیب تهیه‌شده‌، با استفاده از تکنیک‌های طیف‌سنجی پراش پرتوی ایکس، طیف‌سنج مادون‌قرمز تبدیل فوریه، آنالیز توزین حرارتی، میکروسکوپ الکترونی روبشی و اندازه‌گیری سطح ویژه مواد و تخلخل‌سنجی جذب و واجذب نیتروژن به روش BET شناسایی‌شد. این ماده یک سطح ویژه بسیار بالا (m2.g-1 2143)، حجم حفره بزرگ (cm3.g-1 8/0)، پایداری حرارتی/شیمیایی/آب خوب دارد. همچنین نتایج حاصل از سنتز با استفاده از حمام فراصوت، نشان‌داد که ذرات دارای حفره‌های ریز متخلخل، قفس‌های مزوپور و شکل هشت‌وجهی یکنواخت با اندازه متوسط 125 تا 260 نانومتر هستند. میزان مصرف انرژی تابش فراصوت، بسیار کمتر از روش‌های هیدروترمال و سولوترمال است. بنابراین می‌توان گفت که فن‌آوری فراصوت، سبزتر، سریع‌تر و کارآمدتر از روش‌های گرمایش الکتریکی مرسوم است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development and Optimization Synthesis of MIL-101(Cr) by Ultrasound Irradiation Using Response Surface Methodology

نویسندگان [English]

  • Ahmad Nikseresht
  • Hojatolah Normohamadi
Department of Chemistry; Payame Noor University (PNU); P.OBox; 19395-4697 Tehran; Iran
چکیده [English]

MIL-101(Cr) stands as one of the extensively researched chromium-based metal–organic frameworks, comprised of chromium metal ions and terephthalic acid ligands. This study introduces an innovative approach to MIL-101(Cr) synthesis by employing ultrasound (UTS) irradiation. Our primary objective revolved around optimizing key operational parameters, namely time and temperature, using the central composite design method. Subsequently, we conducted an in-depth analysis using variance analysis to understand their respective impacts. To predict process behaviour, we developed quadratic equations under varying conditions, achieving a remarkable R2 value of 0.9998 to relate parameters and synthesis yield. Results revealed a more pronounced influence of time variation compared to temperature on the synthesis process. Moreover, we subjected the synthesized MIL-101(Cr) to rigorous characterization using FT-IR, XRD, SEM, TGA, and N2 physisorption techniques. Our findings showcased the synthesized MIL-101(Cr) possessing exceptional characteristics, including an ultra-high specific surface area (2143 m2. g-1), substantial pore size (0.8 cm3.g-1), and excellent thermal, chemical, and water stability. Further examination indicated the presence of microporous windows, mesoporous cages, and uniform octahedral particles ranging in size between 125-260 nm.
Notably, our study emphasized the energy efficiency of UTS irradiation over conventional electric (CE) heating, highlighting its potential as a quicker, more efficient, and environmentally friendly alternative to conventional synthesis methods.

کلیدواژه‌ها [English]

  • Mil-101(Cr)
  • Ultrasonic irradiation
  • Response surface methodology
  • Metal-organic framework
  • Terephthalic acid
  • Analysis of variance
[1] Kitagawa, S.; Kitaura, R.; Noro, S. (2004). Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375.
[2] Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O.M. (2003). Hydrogen storage in microporous metalorganic frameworks. Science 300, 1127–1129.
[3] Long, J.R.; Yaghi, O.M. (2009). The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1213–1214.
[4] Jiang, H.L.; Xu, Q. (2011). Porous metal-organic frameworks as platforms for functional applications. Chem. Commun. 47, 3351–3370.
[5] Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y.; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T.; et al. (2013). Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339, 193–196.
[6] Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.O.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; et al. (2010). Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428.
[7] Farha, O.K.; Yazaydin, A.O.; Eryazici, I.; Malliakas, C.D.; Hauser, B.G.; Kanatzidis, M.G.; Nguyen, S.T.; Snurr, R.Q.; Hupp, J.T. (2010). De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948.
[8] Yulia, F.; Nasruddin; Zulys, A.; Ruliandini, R. (2019). Metal-Organic Framework Based Chromium Terephthalate (MIL-101 Cr) Growth for Carbon Dioxide Capture: A Review. J. Adv. Res. Fluid Mech. Therm. Sci. 57, 158–174
[9] Murray, L.J.; Dinca, M.; Long, J.R. (2009). Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 38, 1294–1314.
[10] Zhao, X.; Xiao, B.; Fletcher, A.J.; Thomas, K.M.; Bradshaw, D.; Rosseinsky, M.J. (2004). Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 306, 1012–1015.
[11] Yanai, N.; Kitayama, K.; Hijikata, Y.; Sato, H.; Matsuda, R.; Kubota, Y.; Takata, M.; Mizuno, M.; Uemura, T.; Kitagawa, S. (2011). Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nat. Mater. 10, 787–793.
[12] Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I.M.; Kiener, C.; Moos, R. (2009). Metal-organic frameworks for sensing applications in the gas phase. Sensors 9, 1574–1589.
[13] Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. (2013). Designer coordination polymers: Dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42, 6655–6669.
[14] Sadakiyo, M.; Okawa, H.; Shigematsu, A.; Ohba, M.; Yamada, T.; Kitagawa, H. (2012). Promotion of low-humidity proton conduction by controlling hydrophilicity in layered metal-organic frameworks. J. Am. Chem. Soc. 134, 5472–5475.
[15] Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R.E.; Serre, C. (2012). Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268.
[16] Taylor-Pashow, K.M.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. (2009). Postsynthetic modifications of iron-carboxylate nanoscale metalorganic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 131, 14261–14263.
[17] Sun, J.; Yu, G.; Huo, Q.; Kan, Q.; Guan, J. (2014). Epoxidation of styrene over Fe(Cr)-MIL-101 metal–organic frameworks. RSC Adv. 4, 38048.
[18] Férey, G.; Mellot-Draznieks, D.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 309, 2040–2042.
[19] Hong, D.-Y.; Hwang, Y.K.; Serre, C.; Férey, G.; Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Adv. Funct. Mater. 19, 1537–1552.
[20] Li, G.; He, X.; Yin, F.; Chen, B.; Yin, H. (2019). Co-Fe/MIL-101(Cr) hybrid catalysts: Preparation and their electrocatalysis in oxygen reduction reaction. Int. J. Hydrogen Energy 44, 11754–11764.
[21] Tang, Y.; Yin, X.; Mu, M.; Jiang, Y.; Li, X.; Zhang, H.; Ouyang, T. (2020). Anatase TiO2@MIL-101(Cr) nanocomposite for photocatalytic degradation of bisphenol A. Colloids Surf. A Physicochem. Eng. Asp. 596, 124745.
[22] Kavun, V.; van der Veen, M.A.; Repo, E. (2021). Selective recovery and separation of rare earth elements by organophosphorus modified MIL-101(Cr). Microporous Mesoporous Mater. 312, 110747.
[23] Rajati, H.; Navarchian, A.H.; Rodrigue, D.; Tangestaninejad, S. (2021). Effect of immobilizing ionic liquid on amine-functionalized MIL-101(Cr) incorporated in Matrimid membranes for CO2/CH4 separation. Chem. Eng. Process. -Process Intensif. 168, 108590.
[24] Zhao, X.; Wang, Y.; Li, J.; Huo, B.; Huang, H.; Bai, J.; Peng, Y.; Li, S.; Han, D.; Ren, S.; et al. (2021). A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101. Anal. Chim. Acta 1160, 338450.
[25] Wang, Y.; Jia, M.; Wu, X.; Wang, T.; Wang, J.; Hou, X. (2019). PEG modified column MIL-101(Cr)/PVA cryogel as a sorbent in stir bar solid phase extraction for determination of non-steroidal anti-inflammatory drugs in water samples. Microchem. J. 146, 214–219.
[26] Nikseresht, A., Daniyali, A., Ali-Mohammadi, M., Afzalinia, A., Mirzaie, A. (2017). Ultrasound-assisted biodiesel production by a novel composite of Fe (III)-based MOF and phosphotangestic acid as efficient and reusable catalyst. Ultrason. Sonochem. 37, 203-207.
[29] Ghasemi, S., Yousefi, M., Nikseresht, A., Omidi, H. (2021). Covalent binding and in-situ immobilization of lipases on a flexible nanoporous material. Process Biochem. 102, 92-101.
[30] Nikseresht, A., Shokri, N., Mohammadi, M., Afzalinia, A., Nosratollahi, S., Rostamizadeh, S. (2023). TMU-16-NH2: A Metal–Organic Framework as an Efficient, Green, and Heterogeneous Catalyst for the Michael Addition Annulations for the Synthesis of a New Series of 2,4-Diphenylpyrido[4,3-d]Pyrimidines. Polycycl. Aromat. Compd. 1-16. https://doi.org/10.1080/10406638.2023.2239980.
[31] Ghasemi, S., Yousefi, M., Nikseresht, A. (2023). Comparison of covalent and in situ immobilization of Candida antarctica lipase A on a flexible nonporous material. 3 Biotech. 13(3), 99.
[33] Parak, S., Nikseresht, A., Alikarami, M. (2023). Biodiesel Production by a Novel Composite of Fe (III)-based MOF and Phosphomolybdic Acid as an Efficient and Heterogeneous Catalyst. J. Of Applied Chemistry, 18(67), 31-50. (in Persian)
[34] Veisi, H., Nikseresht, A., Ahmadi, N., Khosravi, K., Saeidifar, F. (2019). Suzuki–Miyaura reaction by heterogeneously supported Pd nanoparticles on thio-modified multi walled carbon nanotubes as efficient nanocatalyst. Polyhedron, 162, 240-244.
[36] Zorainy, M. Y., Alalm, M. G., Kaliaguine, S., Boffito, D. C. (2021). Revisiting the MIL-101 metal-organic framework: design, synthesis, modification, advances, and recent applications. J. Mater. Chem. A, 9, 22159-22217.
[37] Bhattacharjee, S., Chen, C., Ahn, W.-S. (2014). Chromium terephthalate metal–organic framework MIL-101: synthesis, functionalization, and applications for adsorption and catalysis, RSC Adv. 4(94), 52500–52525.
[38] Zhao, T., Jeremias, F., Boldog, I., Nguyen, B., Henninger, S.K., Janiak, C. (2015). High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr), Dalton Trans., 44(38), 16791–16801.
[39] A. Herbst, A., Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals, CrystEngComm, 19(29), 4092–4117.
[40] Zou, M.; Dong, M.; Zhao, T. (2022). Advances in Metal-Organic Frameworks MIL-101(Cr). Int. J. Mol. Sci. 23, 9396.
[41] Pourebrahimi, S., Kazemeini, M. (2018). A kinetic study of facile fabrication of MIL-101(Cr) metal-organic framework: Effect of synthetic method. Inorganica Chim. Acta, 471, 513-520.
[42] Haque, E., Khan, N.A., Park, J.H., Jhung, S.H. (2010). Synthesis of a Metal–Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study. Chem. Eur. J. 16, 1046 – 1052.
[43]. Didenko, Y.T., Suslick, K.S. (2002). The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature, 418(6896):394-7. PMID: 12140551.
[44]. Flannigan, D., Suslick, K. (2005). Plasma formation and temperature measurement during single-bubble cavitation. Nature, 434, 52–55.
[45] Cravotto, G., Cintas, P. (2007). The Combined Use of Microwaves and Ultrasound: Improved Tools in Process Chemistry and Organic Synthesis. Chem. Eur. J. 13, 1902.
[46] Yin, D., Li, C., Ren, H., Shekhah, O., Liu, J, Liang, C. (2017). Efficient Pd@ MIL-101 (Cr) hetero-catalysts for 2-butyne-1, 4-diol hydrogenation exhibiting high selectivity. RSC Advances, 7(3), 1626-1633.
[47] F´erey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surbl´e, S., Margiolaki, I. (2005). A ChromiumTerephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science, 309(5743), 2040–2042.
[48] Khan, N. A., Kang, I. J., Seok, H. Y., Jhung, S. H. (2011). Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101, Chem. Eng. J. 166(3), 1152–1157.
[49] Du, P. D., Thanh, H. T. M., To, T. C.,Thang, H. S., Tinh, M. X., Tuyen, T. N., Hoa, T. T., Khieu, D. Q. (2019). Metal-Organic Framework MIL-101: Synthesis and Photocatalytic Degradation of Remazol Black B Dye, J. Nanomater. 2019, 6061275.
[50] Zhao, T., Jeremias, F., Boldog, I., Nguyen, B., Henninger, S. K., Janiak, C. (2015). High-yield, fluoride-free and large-scale synthesis of MIL-101(Cr), Dalton Trans. 44(38), 16791–16801.
[51] Tan, B., Luo, Y., Liang, X., Wang, S., Gao, X., Zhang, Z., Fang, Y. (2019). Mixed-Solvothermal Synthesis of MIL-101(Cr) and Its Water Adsorption/Desorption Performance, Ind. Eng. Chem. Res. 58(8), 2983–2990.
[52] Soltanolkottabi, F., Talaie, M. R., Aghamiri, S., Tangestaninejad, S. (2019). Introducing a dual-step procedure comprising microwave and electrical heating stages for the morphology-controlled synthesis of chromiumbenzene dicarboxylate, MIL-101(Cr), applicable for CO2 adsorption, J. Environ. Manage. 250, 109416.
[53] Bromberg, L., Diao, Y., Wu, H., Speakman, S. A., Hatton, T. A. (2012). Chromium (III) Terephthalate Metal Organic Framework (MIL-101): HF-Free Synthesis, Structure, Polyoxometalate Composites, and Catalytic Properties, Chem. Mater. 24(9), 1664–1675.
[54] Leng, K., Sun, Y., Li, X., Sun, S., Xu, W. (2016). Rapid Synthesis of Metal–Organic Frameworks MIL-101(Cr) Without the Addition of Solvent and Hydrofluoric Acid, Cryst. Growth Des. 16(3), 1168–1171.
[55] Zhou, Z., Mei, L., Ma, C., Xu, F., Xiao, J., Xia, Q. Li, Z. (2016). A novel bimetallic MIL-101 (Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity. Chem. Eng. Sci. 147, 109-117.
[56] Gholipour, F., Rahmani, M., Panahi, F. (2022). Separation of 1‐Naphthol from Wastewater Using HF‐Free Microwave‐Assisted Synthesized MIL‐101(Cr): Kinetics, Thermodynamics and Reusability Studies. ChemistrySelect, 7(16), e202200096. https://doi.org/10.1002/slct.202200096.
[57] Wu, Y., Liu. Y., Xu, J. (2018). Synthesis of amino-functionalized MIL-101(Cr) as high-performance HF gas sensor. Chemistry, Materials Science, https://api.semanticscholar.org/CorpusID:55447759.
[58] Gharibeh, M., Tompsett, G.A., Conner, W.C., Yngvesson, K.S. (2008). Microwave Synthesis of SAPO-11 and AlPO-11: Aspects of Reactor Engineering. ChemPhysChem. 9, 2580.
[59] Kayal, S., Chakraborty, A. (2018). Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH4 storage and CO2 capture. J. Chem. Eng. 334, 780-788.
[60] Zarei, A.R., Rezaeivahidian, H., Soleymani, A.R. (2015). Investigation on removal of p-nitrophenol using a hybridized photo-thermal activated persulfate process: Central composite design modeling. Process Saf. Environ. Prot. 98, 109–115.
[61] Garg, U.K., Kaur, M.P., Garg, V.K., Sud, D. (2008). Removal of Nickel (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Bioresour. Technol. 99, 1325–1331.
[62] Parak, S., Nikseresht, A., Alikarami, M., Ghasemi, S. (2022). RSM optimization of biodiesel production by a novel composite of Fe (ΙΙΙ)-based MOF and phosphomolybdic acid. Res Chem Intermed. 48, 3773-3793.
[63] Nikseresht, A., Mirzaei, N., Masoumi, S., Azizi, H.R. (2022). Response Surface Methodology Optimization of Friedel–Crafts Acylation Using Phosphotungstic Acid Encapsulation in a Flexible Nanoporous Material. ACS Mater. Au 3, 123-131.
[64] Jannatdost, E., Tavakoli, A., Emamalisabzi, R., Kheiri, F. (2020). Synthesis of nanosized alumina templates with desired pores using Central Composite Design. J. Of Applied Chemistry, 15 (55), 81-94. (in Persian)
[65] Sotoodeh, E., Almasifar, D., Burromandpiroze, J. ((2021). Measuring of metanephrine by UV-Vis peak of surface absorption Plasmon resonance of silver nanoparticles by response surface methodology. J. Of Applied Chemistry, 16 (60), 95-108. (in Persian)
[66] Akbari, N., Nabizadeh Chianeh, F. (2022). Optimization of reactive dye removal by electrochemical oxidation with Ti/nanoZnO (Experimental study). J. Of Applied Chemistry, 17 (63), 67-86. (in Persian)