[1] Mojaverian Kermani, A., Ahmadpour, A., & Rohani Bastami, T. (2021). Synthesis of dawson hetero-polyoxometalate/activated carbon composite and evaluation of its catalytic application for oxidative removal of dibenzothiophene. Applied Chemistry Today, 449, 116137.
[2] Rezvani, M.A., Shaterian, M., & Aghmasheh, M. (2019). Oxidation desulfurization of gasoline by a new organic-inorganic hybride nanocomposite (TBA)4PW11Fe@PVA as an efficient and recoverable nanocatalyst. Applied Chemistry Today, 14, 167-180.
[3] Belousov, A.S., & Shafiq, I. (2022). Towards the sustainable production of ultra-low-sulfur fuels through photocatalytic oxidation. Catalysts, 12(9), 1036.
[4] Javadli, R., & De Klerk, A. (2012). Desulfurization of heavy oil. Applied petrochemical research. 1, 3-19.
[5] Avakh, Z., Shadman Lakmehsari, M., Farajmand B., Rezvani, M.A. (2021). Experimental and molecular simulation evaluation of the organic-metal frameworks in removing sulfur compounds from petroleum-gasoline cuts in order to produce clean fuel. Applied Chemistry Today. 248, 573-586.
[6] Matsuzawa, S., Tanaka, J., Sato, S., & Ibusuki, T. (2002). Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2: effect of hydrogen peroxide and ultrasound irradiation. Journal of photochemistry and photobiology A: Chemistry, 149(1-3), 183-189.
[7] Mousavi-Kamazani, M., Rahmatolahzadeh, R., Beshkar, F. (2017). Facile solvothermal synthesis of CeO2-CuO nanocomposite photocatalyst using novel precursors with enhanced photocatalytic performance in dye degradation. Journal of Inorganic and Organometallic Polymers and Materials. 27, 1342–1350.
[8] Rahmatolahzadeh, R., Mousavi-Kamazani, M., & Shobeiri, S.A. (2017). Facile co-precipitation-calcination synthesis of CuCo2O4 nanostructures using novel precursors for degradation of azo dyes. Journal of Inorganic and Organometallic Polymers and Materials. 27, 313–322.
[9] Geng, T., He, J., Hu, L., & Li, J. (2019). Structure and photocatalytic oxidation desulfurization performance of CeO2/HTi2NbO7-NS nanocomposite. Inorganic Chemistry Communications, 101, 103-112.
[10] Li, F., Liu, Y., Sun, Z., Zhao, Y., Liu, R., Chena L., & Zhao, D. (2012). Photocatalytic oxidative desulfurization of dibenzothiophene under simulated sunlight irradiation with mixed-phase Fe2O3 prepared by solution combustion. Catalysis Science & Technology, 2(7), 1455-1462.
[11] Zhen, Y., Wang, J., Fu, F., Fu, W., & Liang, Y. (2019). The novel Z-scheme ternary-component Ag/AgI/α-MoO3 catalyst with excellent visible-light photocatalytic oxidative desulfurization performance for model fuel. Nanomaterials. 9(7), 1054.
[12] Guo, C., Xu, L., He, J., Hu, L., Wang, B., & Da, L. (2017). Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes for removal of mercaptan. Nano. 12(06), 1750075.
[13] Hitam, C., Jalil, A.A., Triwahyono, S., Ahmad, A., Jaafar, N.F., Salamun, N., … & Ghazalid, Z. (2016). Synergistic interactions of Cu and N on surface altered amorphous TiO2 nanoparticles for enhanced photocatalytic oxidative desulfurization of dibenzothiophene. RSC Advances. 6(80), 76259-76268.
[14] Kang, M., Wang, X., Zhang, J., Lu, Y., Chen, X., Yang, L., & Wang, F. (2019). Boosting the photocatalytic oxidative desulfurization of dibenzothiophene by decoration of MWO4 (M= Cu, Zn, Ni) on WO3. Journal of Environmental Chemical Engineering. 7(1), 102809.
[15] Zhang, G., Ren, J., Zhao, W., Tian M., & Chen, W. (2018). Photocatalytic desulfurization of thiophene base on molecular oxygen and zinc phthalocyanine/g-C3N4. Research on Chemical Intermediates. 44(9), 5547-5557.
[16] Lisowski, P., Colmenares, J.C., Mašek, O., Łomot, D., Chernyayeva, O., & Lisovytskiy, D. (2018). Novel biomass-derived hybrid TiO2/carbon material using tar-derived secondary char to improve TiO2 bonding to carbon matrix. Journal of Analytical and Applied Pyrolysis. 131, 35-41.
[17] Cao, Q., Yu, Q., Connell, D.W., & Yu, G. (2013). Titania/carbon nanotube composite (TiO2/CNT) and its application for removal of organic pollutants. Clean Technologies and Environmental Policy. 15(6), 871-880.
[18] Kalantari, K., Kalbasi, M., Sohrabi, M., & Royaee, S.J. (2016). Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceramics International. 42(13), 14834-14842.
[19] Wang, C., Zhu, W., Xu, Y., Xu, H., Zhang, M., Chao, Y., … & J. Wang, (2014). Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceramics International. 40(8), 11627-11635.
[20] Cui, J., Wang, G., Liu, W., Ke, P., Tian, Q., Li, X., & Tian, Y. (2021). Synthesis BiVO4 modified by CuO supported onto bentonite for molecular oxygen photocatalytic oxidative desulfurization of fuel under visible light. Fuel. 290, 120066.
[21] Mousavi-Kamazani, M., Ghodrati, M., & Rahmatolahzadeh, R. (2020). Fabrication of Z-scheme flower-like AgI/Bi2O3 heterojunctions with enhanced visible light photocatalytic desulfurization under mild conditions. Journal of Materials Science: Materials in Electronics. 31, 5622-5634.
[22] Liaqat, M., Iqbal, T., Maryam, I., Riaz, K.N., Afsheen, S., Sohaib, M., … & Al-Fatesh, A.S. (2024). Enhancing photocatalytic activity: investigating the synthesis and characterization of BiVO4/Cu2O/graphene ternary nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry. 446, 115122.