[1] Sun, J. K., Yang, X. D., Yang, G. Y., & Zhang, J. (2019). Bipyridinium derivative-based coordination polymers: From synthesis to materials applications. Coordination Chemistry Reviews, 378, 533-560.
[2] Wang, Y. N., Wang, R. Y., Yang, Q. F., & Yu, J. H. (2020). Acylhydrazidate-based porous coordination polymers and reversible I2 adsorption properties. Arabian Journal of Chemistry, 13(1), 2722-2733.
[3] Tang, L. P., Yang, S., Liu, D., Wang, C., Ge, Y., Tang, L. M., & Zhang, H. (2020). Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications. Journal of Materials Chemistry A, 8(29), 14356-14383.
[4] Biradha, K., Goswami, A., & Moi, R. (2020). Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evolution reactions. Chemical Communications, 56(74), 10824-10842.
[5] Li, W. H., Deng, W. H., Wang, G. E., & Xu, G. (2020). Conductive MOFs. EnergyChem, 2(2), 100029.
[6] Wang, Y. N., Wang, S. D., Cao, K. Z., & Zou, G. D. (2021). Multi-responsive fluorescent sensor based on Cu (II) coordination polymer for selective detection of acetylacetone and Cr (VI) ions. Inorganica Chimica Acta, 522, 120363.
[7] Li, L., Lin, R. B., Krishna, R., Li, H., Xiang, S., Wu, H., & Chen, B. (2018). Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 362(6413), 443-446.
[8] Wang, Y., Yan, J., Wen, N., Xiong, H., Cai, S., He, Q., & Liu, Y. (2020). Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 230, 119619.
[9] Mehtab, T., Yasin, G., Arif, M., Shakeel, M., Korai, R. M., Nadeem, M., & Lu, X. (2019). Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. Journal of Energy Storage, 21, 632-646.
[10] Hoskins, B. F., & Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI [4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society, 112(4), 1546-1554.
[11] Batten, S. R., & Robson, R. (1998). Interpenetrating nets: ordered, periodic entanglement. Angewandte Chemie International Edition, 37(11), 1460-1494.
[12] Moulton, B., & Zaworotko, M. J. (2001). From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chemical Reviews, 101(6), 1629-1658.
[13] Khlobystov, A. N., Blake, A. J., Champness, N. R., Lemenovskii, D. A., Majouga, A. G., Zyk, N. V., & Schröder, M. (2001). Supramolecular design of one-dimensional coordination polymers based on silver (I) complexes of aromatic nitrogen-donor ligands. Coordination Chemistry Reviews, 222(1), 155-192.
[14] Lehn, J. M. (2002). Toward self-organization and complex matter. Science, 295(5564), 2400-2403.
[15] Stumpf, H. O., Ouahab, L., Pei, Y., Bergerat, P., & Kahn, O. (1994). Chemistry and physics of a molecular-based magnet containing three spin carriers, with a fully interlocked structure. Journal of the American Chemical Society, 116(9), 3866-3874.
[16] Fujita, M., Kwon, Y. J., Washizu, S., & Ogura, K. (1994). Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4'-bipyridine. Journal of the American Chemical Society, 116(3), 1151-1152.
[17] SY, S., & Chui, S. (1999). MF. Lo, JPH Charmant, AG Orpen and ID Williams. Science, 283, 1148.
[18] Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly porous and stable metal− organic frameworks: structure design and sorption properties. Journal of the American Chemical Society, 122(7), 1391-1397.
[19] Neels, A., Stoeckli-Evans, H., Chavan, S. A., & Yakhmi, J. V. (2001). {(NBu4)2Mn[Cu (opba)]2}n: a new structural class among ‘opba’bimetallic magnets. Inorganica Chimica Acta, 326(1), 106-110.
[20] Batten, S. R. (2013). Coordination polymers. In Encyclopedia of Supramolecular Chemistry-Two-Volume Set (Print) (pp. 1-13). CRC Press.
[21] Zheng, S. L., Tong, M. L., Fu, R. W., Chen, X. M., & Ng, S. W. (2001). Toward designed assembly of microporous coordination networks constructed from silver (I)− hexamethylenetetramine layers. Inorganic Chemistry, 40(14), 3562-3569.
[22] Hou, H., Meng, X., Song, Y., Fan, Y., Zhu, Y., Lu, H., & Shao, W. (2002). Two-Dimensional rhombohedral grid coordination polymers [M (bbbt)2(NCS)2] n (M= Co, Mn, or Cd; bbbt= 1,1 ‘-(1,4-butanediyl) bis-1 H-benzotriazole): synthesis, crystal structures, and third-order nonlinear optical properties. Inorganic Chemistry, 41(15), 4068-4075.
[23] Du, M., Chen, S. T., Bu, X. H., & Ribas, J. (2002). Crystal structure and properties of a CuII coordination polymer with 2-D grid-like host architecture for the inclusion of organic guest molecule. Inorganic Chemistry Communications, 5(11), 1003-1006.
[24] Hollingsworth, M. D. (2002). Crystal engineering: from structure to function. Science, 295(5564), 2410-2413.
[25] Evans, O. R., & Lin, W. (2002). Crystal engineering of NLO materials based on metal− organic coordination networks. Accounts of chemical research, 35(7), 511-522.
[26] Moulton, B., & Zaworotko, M. J. (2002). Coordination polymers: toward functional transition metal sustained materials and supermolecules. Current Opinion in Solid State and Materials Science, 6(2), 117-123.
[27] Carlucci, L., Ciani, G., Proserpio, D. M., & Sironi, A. (1995). 1-, 2-, and 3-dimensional polymeric frames in the coordination chemistry of AgBF4 with pyrazine. The first example of three interpenetrating 3-dimensional triconnected nets. Journal of the American Chemical Society, 117(16), 4562-4569.
[28] Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P., Li, W. S., & Schröder, M. (1999). Solvent control in the synthesis of 3, 6-bis (pyridin-3-yl)-1, 2, 4, 5-tetrazine-bridged cadmium (II) and zinc (II) coordination polymers. Inorganic Chemistry, 38(10), 2259-2266.
[29] Biradha, K., Domasevitch, K. V., Hogg, C., Moulton, B., Power, K. N., & Zaworotko, M. J. (1999). Interpenetrating covalent and noncovalent nets in the crystal structures of [M (4,4′-bipyridine)2(NO3)2]·3C10H8 (M= Co, Ni). Crystal Engineering, 2(1), 37-45.
[30] Ciurtin, D. M., Dong, Y. B., Smith, M. D., Barclay, T., & zur Loye, H. C. (2001). Two versatile N,N‘-bipyridine-type ligands for preparing organic− inorganic coordination polymers: New cobalt-and nickel-containing framework materials. Inorganic Chemistry, 40(12), 2825-2834.
[31] Ni, Z., & Vittal, J. J. (2001). Interpenetrating versus noninterpenetrating (4,4) nets: influence of the size of the metal and counter ions. Crystal Growth & Design, 1(3), 195-197.
[32] Chen, S. S., Fan, J., Okamura, T. A., Chen, M. S., Su, Z., Sun, W. Y., & Ueyama, N. (2010). Synthesis, crystal structure, and photoluminescence of a series of zinc (II) coordination polymers with 1,4-di (1 H-imidazol-4-yl) benzene and varied carboxylate ligands. Crystal Growth & Design, 10(2), 812-822.
[33] Chernova, E. F., Ovsyannikov, A. S., Solovieva, S. E., Antipin, I. S., Kyritsakas, N., Hosseini, M. W., & Ferlay, S. (2019). Control of dimensionality in Manganese Coordination Polymers using rigid tetrahedral-shaped [1.1. 1.1] metacyclophane ligands bearing benzoate coordinating sites: from homochiral 1D to 3D diamond-like structures. Inorganic Chemistry Communications, 106, 197-201.
[34] Banfi, S., Carlucci, L., Caruso, E., Ciani, G., & Proserpio, D. M. (2002). Using long bis (4-pyridyl) ligands designed for the self-assembly of coordination frameworks and architectures. Journal of the Chemical Society, Dalton Transactions, (13), 2714-2721.
[35] Carlucci, L., Cozzi, N., Ciani, G., Moret, M., Proserpio, D. M., & Rizzato, S. (2002). A three-dimensional nanoporous flexible network of ‘square-planar’copper (II) centres with an unusual topology. Chemical Communications, (13), 1354-1355.
[36] Jung, O. S., Kim, Y. J., Lee, Y. A., Park, K. M., & Lee, S. S. (2003). Subtle Role of Polyatomic Anions in Molecular Construction: Structures and Properties of AgX Bearing 2,4‘-Thiobis (pyridine)(X-= NO3-, BF4-, ClO4-, PF6-, CF3CO2-, and CF3SO3-). Inorganic Chemistry, 42(3), 844-850.
[37] Du, M., Bu, X. H., Huang, Z., Chen, S. T., Guo, Y. M., Diaz, C., & Ribas, J. (2003). From metallacyclophanes to 1-D coordination polymers: Role of anions in self-assembly processes of copper (II) and 2, 5-bis (3-pyridyl)-1, 3, 4-oxadiazole. Inorganic Chemistry, 42(2), 552-559.
[38] Hussain, Z., Khalaf, M., Adil, H., Zageer, D., Hassan, F., Mohammed, S., & Yousif, E. (2016). Metal Complexes of Schiff's Bases Containing Sulfonamides Nucleus: A Review. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(5), 1008-25.
[39] Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A.S., Lemaoui, T., Verma, R., & Benguerba, Y. (2023). Schiff bases and their metal Complexes: A review on the history, synthesis, and applications. Inorganic Chemistry Communications, 150-110451.
[40] Souza, P., Garcia-Vázquez, J. A., & Masaguer, J. R. (1985). Synthesis and characterization of copper (II) and nickel (II) complexes of the Schiff base derived from 2-(2-aminophenyl) benzimidazole and salicylaldehyde. Transition Metal Chemistry, 10, 410-412.
[41] Rogge, S. M., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., & Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134-3184.
[42] Wu, M. X., & Yang, Y. W. (2017). Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Advanced Materials, 29(23), 1606134.
[43] Kim, S. M., Jeon, H., Shin, S. H., Park, S. A., Jegal, J., Hwang, S. Y., & Park, J. (2018). Superior toughness and fast self‐healing at room temperature engineered by transparent elastomers. Advanced Materials, 30(1), 1705145.
[44] Burattini, S., Greenland, B. W., Merino, D. H., Weng, W., Seppala, J., Colquhoun, H. M., & Rowan, S. J. (2010). A healable supramolecular polymer blend based on aromatic π− π stacking and hydrogen-bonding interactions. Journal of the American Chemical Society, 132(34), 12051-12058.
[45] Wang, Q., Bi, C. F., Fan, Y. H., Zhang, X., Zuo, J., & Liu, S. B. (2011). A novel copper (II) complex with schiff base derived from o-vanillin and L-methionine: syntheses and crystal structures. Russian Journal of Coordination Chemistry, 37, 228-234.
[46] İnci, D., Aydın, R., Vatan, Ö., Sevgi, T., Yılmaz, D., Zorlu, Y., & Çinkılıç, N. (2017). Synthesis and crystal structures of novel copper (II) complexes with glycine and substituted phenanthrolines: reactivity towards DNA/BSA and in vitro cytotoxic and antimicrobial evaluation. JBIC Journal of Biological Inorganic Chemistry, 22, 61-85.
[47] İnci, D., Aydın, R., Huriyet, H., Zorlu, Y., & Çinkılıç, N. (2018). Newly synthesized Cu (II) pyrazino [2,3‐f][1,10] phenanthroline complexes as potential anticancer candidates. Applied Organometallic Chemistry, 32(4), e4309.
[48] Inci, D., Köseler, A., Zeytünlüoğlu, A., Aydın, R., & Zorlu, Y. (2019). Interaction of a new copper (II) complex by bovine serum albumin and dipeptidyl peptidase-IV. Journal of Molecular Structure, 1177, 317-322.
[49] İnci, D., Aydın, R., Vatan, Ö., Huriyet, H., Zorlu, Y., Çoşut, B., & Çinkılıç, N. (2019). Cu (II) tyrosinate complexes containing methyl substituted phenanthrolines: Synthesis, X‐ray crystal structures, biomolecular interactions, antioxidant activity, ROS generation and cytotoxicity. Applied Organometallic Chemistry, 33(1), e4652.
[50] CrysAlisPro (version 1.171.41.113a), Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, (2021).
[51] Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography, 42(2), 339-341.
[52] Sheldrick, G. M. (2015). SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations and Advances, 71(1), 3-8.
[53] Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(1), 3-8.
[54] Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography, 65(2), 148-155.