تأثیر موقعیت اتم نیتروژن پیریدینی در لیگاند بازشیف سه دندانه NN'O بر نوع پلیمر کوئوردیناسیونی کمپلکس مس (II): یک بررسی بلورشناسی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه شیمی معدنی، دانشکده شیمی، دانشگاه اصفهان، اصفهان، ایران

2 گروه شیمی معدنی، دانشکده شیمی و علوم نفت، دانشگاه بوعلی سینا، همدان، ایران

چکیده

پلیمرهای کوئوردیناسیونی (CPs) با استفاده از لیگاندهای آلی پل‌ساز و یون‌های فلزی تهیه می‌شوند که با توجه به شکل هندسی کوئوردینانسی فلز، لیگاندهای پل‌ساز و اتم‌های دهنده‌ی موجود در این لیگاندها، تشکیل ساختارهای پلیمری مختلف یک‌بعدی، دوبعدی یا شبکه‌ی پلیمری سه‌بعدی امکان پذیر است. به منظور بررسی تأثیر موقعیت اتم نیتروژن پیریدینی در لیگاند بازشیف سه دندانه NN'O بر نوع پلیمرهای کوئوردیناسیونی، دو کمپلکس مس تهیه شد. لیگاند HL2با تکنیکهای IR، NMR و آنالیز عنصری، و کمپلکسها نیز با تکنیک‌های IR، آنالیز عنصری و پراش پرتو ایکس مورد بررسی و شناسایی قرار گرفتند. داده‌های ساختاری کمپلکسهای مس نشان داد که با تغییر اتم نیتروژن پیریدنی از موقعیت 3 به 4 در لیگاند بازشیف، ساختار کمپلکس مس از حالت دو بعدی به سه بعدی تغییر مییابد. بررسی برهمکنشهای بینمولکولی و درونمولکولی با برنامه‌ی NCI نشان می‌دهد که برهمکنش‌ها در دو مولکول از نوع پیوند هیدروژنی، پیوند هالوژنی، CH…π، انباشتگیπ…π ، فلز...π و جفت الکترون غیر پیوندیπ… است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of the Position of the Pyridine Nitrogen Atom in the Tridentate NN'O Schiff Base Ligand on the Type of Coordination Polymer of the Copper(II) Complex: A Crystallographic Study

نویسندگان [English]

  • Kimia Forooghi 1
  • Hadi Amiri Rudbari 1
  • Reza Azadbakht 2
1 Department of Chemistry, Faculty of Chemistry, University of Isfahan, Isfahan, Iran
2 Department of Chemistry, Faculty of Chemistry and Petroleum Sciences, University of Bu-Ali Sina, Hamedan, Iran
چکیده [English]

Coordination polymers (CPs) are synthesized using bridging organic ligands and metal ions, depending on the geometric coordination of the metal, the bridging ligands, and the donor atoms present in these ligands, various one-, two-, or three-dimensional polymeric structures can form. To investigate the effect of the position of the pyridine nitrogen atom in the tridentate NN'O Schiff base ligand on the type of coordination polymers, two copper complexes were prepared. The ligand HL2 was characterized using IR, NMR, and elemental analysis, while the complexes were analyzed and identified using IR, elemental analysis, and X-ray diffraction techniques. The structural data of the copper complexes indicated that changing the pyridine nitrogen from position 3 to position 4 in the Schiff base ligand altered the structure of the copper complex from two-dimensional to three-dimensional. Analysis of inter- and intramolecular interactions using the NCI program shows that the interactions in both molecules are of the hydrogen bonding, halogen bonding, CH…π, π…π stacking, metal…π, and lone-pair…π type.

کلیدواژه‌ها [English]

  • Coordination Polymers
  • Schiff base Compounds
  • Copper Complex
  • Halogen
  • Crystallography
[1] Sun, J. K., Yang, X. D., Yang, G. Y., & Zhang, J. (2019). Bipyridinium derivative-based coordination polymers: From synthesis to materials applications. Coordination Chemistry Reviews378, 533-560.
[2] Wang, Y. N., Wang, R. Y., Yang, Q. F., & Yu, J. H. (2020). Acylhydrazidate-based porous coordination polymers and reversible I2 adsorption properties. Arabian Journal of Chemistry13(1), 2722-2733.
[3] Tang, L. P., Yang, S., Liu, D., Wang, C., Ge, Y., Tang, L. M., & Zhang, H. (2020). Two-dimensional porous coordination polymers and nano-composites for electrocatalysis and electrically conductive applications. Journal of Materials Chemistry A8(29), 14356-14383.
[4] Biradha, K., Goswami, A., & Moi, R. (2020). Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evolution reactions. Chemical Communications56(74), 10824-10842.
[5] Li, W. H., Deng, W. H., Wang, G. E., & Xu, G. (2020). Conductive MOFs. EnergyChem2(2), 100029.
[6] Wang, Y. N., Wang, S. D., Cao, K. Z., & Zou, G. D. (2021). Multi-responsive fluorescent sensor based on Cu (II) coordination polymer for selective detection of acetylacetone and Cr (VI) ions. Inorganica Chimica Acta522, 120363.
[7] Li, L., Lin, R. B., Krishna, R., Li, H., Xiang, S., Wu, H., & Chen, B. (2018). Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science362(6413), 443-446.
[8] Wang, Y., Yan, J., Wen, N., Xiong, H., Cai, S., He, Q., & Liu, Y. (2020). Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials230, 119619.
[9] Mehtab, T., Yasin, G., Arif, M., Shakeel, M., Korai, R. M., Nadeem, M., & Lu, X. (2019). Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. Journal of Energy Storage21, 632-646.
[10] Hoskins, B. F., & Robson, R. (1990). Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI [4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2Journal of the American Chemical Society112(4), 1546-1554.
[11] Batten, S. R., & Robson, R. (1998). Interpenetrating nets: ordered, periodic entanglement. Angewandte Chemie International Edition37(11), 1460-1494.
[12] Moulton, B., & Zaworotko, M. J. (2001). From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chemical Reviews101(6), 1629-1658.
[13] Khlobystov, A. N., Blake, A. J., Champness, N. R., Lemenovskii, D. A., Majouga, A. G., Zyk, N. V., & Schröder, M. (2001). Supramolecular design of one-dimensional coordination polymers based on silver (I) complexes of aromatic nitrogen-donor ligands. Coordination Chemistry Reviews222(1), 155-192.
[14] Lehn, J. M. (2002). Toward self-organization and complex matter. Science295(5564), 2400-2403.
[15] Stumpf, H. O., Ouahab, L., Pei, Y., Bergerat, P., & Kahn, O. (1994). Chemistry and physics of a molecular-based magnet containing three spin carriers, with a fully interlocked structure. Journal of the American Chemical Society116(9), 3866-3874.
[16] Fujita, M., Kwon, Y. J., Washizu, S., & Ogura, K. (1994). Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4'-bipyridine. Journal of the American Chemical Society116(3), 1151-1152.
[17] SY, S., & Chui, S. (1999). MF. Lo, JPH Charmant, AG Orpen and ID Williams. Science283, 1148.
[18] Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly porous and stable metal− organic frameworks: structure design and sorption properties. Journal of the American Chemical Society122(7), 1391-1397.
[19] Neels, A., Stoeckli-Evans, H., Chavan, S. A., & Yakhmi, J. V. (2001). {(NBu4)2Mn[Cu (opba)]2}n: a new structural class among ‘opba’bimetallic magnets. Inorganica Chimica Acta326(1), 106-110.
[20] Batten, S. R. (2013). Coordination polymers. In Encyclopedia of Supramolecular Chemistry-Two-Volume Set (Print) (pp. 1-13). CRC Press.
[21] Zheng, S. L., Tong, M. L., Fu, R. W., Chen, X. M., & Ng, S. W. (2001). Toward designed assembly of microporous coordination networks constructed from silver (I)− hexamethylenetetramine layers. Inorganic Chemistry40(14), 3562-3569.
[22] Hou, H., Meng, X., Song, Y., Fan, Y., Zhu, Y., Lu, H., & Shao, W. (2002). Two-Dimensional rhombohedral grid coordination polymers [M (bbbt)2(NCS)2] n (M= Co, Mn, or Cd; bbbt= 1,1 ‘-(1,4-butanediyl) bis-1 H-benzotriazole): synthesis, crystal structures, and third-order nonlinear optical properties. Inorganic Chemistry41(15), 4068-4075.
[23] Du, M., Chen, S. T., Bu, X. H., & Ribas, J. (2002). Crystal structure and properties of a CuII coordination polymer with 2-D grid-like host architecture for the inclusion of organic guest molecule. Inorganic Chemistry Communications5(11), 1003-1006.
[24] Hollingsworth, M. D. (2002). Crystal engineering: from structure to function. Science295(5564), 2410-2413.
[25] Evans, O. R., & Lin, W. (2002). Crystal engineering of NLO materials based on metal− organic coordination networks. Accounts of chemical research35(7), 511-522.
[26] Moulton, B., & Zaworotko, M. J. (2002). Coordination polymers: toward functional transition metal sustained materials and supermolecules. Current Opinion in Solid State and Materials Science6(2), 117-123.
[27] Carlucci, L., Ciani, G., Proserpio, D. M., & Sironi, A. (1995). 1-, 2-, and 3-dimensional polymeric frames in the coordination chemistry of AgBF4 with pyrazine. The first example of three interpenetrating 3-dimensional triconnected nets. Journal of the American Chemical Society117(16), 4562-4569.
[28] Withersby, M. A., Blake, A. J., Champness, N. R., Cooke, P. A., Hubberstey, P., Li, W. S., & Schröder, M. (1999). Solvent control in the synthesis of 3, 6-bis (pyridin-3-yl)-1, 2, 4, 5-tetrazine-bridged cadmium (II) and zinc (II) coordination polymers. Inorganic Chemistry38(10), 2259-2266.
[29] Biradha, K., Domasevitch, K. V., Hogg, C., Moulton, B., Power, K. N., & Zaworotko, M. J. (1999). Interpenetrating covalent and noncovalent nets in the crystal structures of [M (4,4′-bipyridine)2(NO3)2]·3C10H8 (M= Co, Ni). Crystal Engineering2(1), 37-45.
[30] Ciurtin, D. M., Dong, Y. B., Smith, M. D., Barclay, T., & zur Loye, H. C. (2001). Two versatile N,N‘-bipyridine-type ligands for preparing organic− inorganic coordination polymers: New cobalt-and nickel-containing framework materials. Inorganic Chemistry40(12), 2825-2834.
[31] Ni, Z., & Vittal, J. J. (2001). Interpenetrating versus noninterpenetrating (4,4) nets: influence of the size of the metal and counter ions. Crystal Growth & Design1(3), 195-197.
[32] Chen, S. S., Fan, J., Okamura, T. A., Chen, M. S., Su, Z., Sun, W. Y., & Ueyama, N. (2010). Synthesis, crystal structure, and photoluminescence of a series of zinc (II) coordination polymers with 1,4-di (1 H-imidazol-4-yl) benzene and varied carboxylate ligands. Crystal Growth & Design10(2), 812-822.
[33] Chernova, E. F., Ovsyannikov, A. S., Solovieva, S. E., Antipin, I. S., Kyritsakas, N., Hosseini, M. W., & Ferlay, S. (2019). Control of dimensionality in Manganese Coordination Polymers using rigid tetrahedral-shaped [1.1. 1.1] metacyclophane ligands bearing benzoate coordinating sites: from homochiral 1D to 3D diamond-like structures. Inorganic Chemistry Communications106, 197-201.
[34] Banfi, S., Carlucci, L., Caruso, E., Ciani, G., & Proserpio, D. M. (2002). Using long bis (4-pyridyl) ligands designed for the self-assembly of coordination frameworks and architectures. Journal of the Chemical Society, Dalton Transactions, (13), 2714-2721.
[35] Carlucci, L., Cozzi, N., Ciani, G., Moret, M., Proserpio, D. M., & Rizzato, S. (2002). A three-dimensional nanoporous flexible network of ‘square-planar’copper (II) centres with an unusual topology. Chemical Communications, (13), 1354-1355.
[36] Jung, O. S., Kim, Y. J., Lee, Y. A., Park, K. M., & Lee, S. S. (2003). Subtle Role of Polyatomic Anions in Molecular Construction: Structures and Properties of AgX Bearing 2,4‘-Thiobis (pyridine)(X-= NO3-, BF4-, ClO4-, PF6-, CF3CO2-, and CF3SO3-). Inorganic Chemistry42(3), 844-850.
[37] Du, M., Bu, X. H., Huang, Z., Chen, S. T., Guo, Y. M., Diaz, C., & Ribas, J. (2003). From metallacyclophanes to 1-D coordination polymers: Role of anions in self-assembly processes of copper (II) and 2, 5-bis (3-pyridyl)-1, 3, 4-oxadiazole. Inorganic Chemistry42(2), 552-559.
[38] Hussain, Z., Khalaf, M., Adil, H., Zageer, D., Hassan, F., Mohammed, S., & Yousif, E. (2016). Metal Complexes of Schiff's Bases Containing Sulfonamides Nucleus: A Review. Research Journal of Pharmaceutical, Biological and Chemical Sciences7(5), 1008-25.
[39] Boulechfar, C., Ferkous, H., Delimi, A., Djedouani, A., Kahlouche, A., Boublia, A., Darwish, A.S., Lemaoui, T., Verma, R., & Benguerba, Y. (2023). Schiff bases and their metal Complexes: A review on the history, synthesis, and applications. Inorganic Chemistry Communications, 150-110451.
[40] Souza, P., Garcia-Vázquez, J. A., & Masaguer, J. R. (1985). Synthesis and characterization of copper (II) and nickel (II) complexes of the Schiff base derived from 2-(2-aminophenyl) benzimidazole and salicylaldehyde. Transition Metal Chemistry10, 410-412.
[41] Rogge, S. M., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepúlveda-Escribano, A., & Gascon, J. (2017). Metal–organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews46(11), 3134-3184.
[42] Wu, M. X., & Yang, Y. W. (2017). Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Advanced Materials29(23), 1606134.
[43] Kim, S. M., Jeon, H., Shin, S. H., Park, S. A., Jegal, J., Hwang, S. Y., & Park, J. (2018). Superior toughness and fast self‐healing at room temperature engineered by transparent elastomers. Advanced Materials30(1), 1705145.
[44] Burattini, S., Greenland, B. W., Merino, D. H., Weng, W., Seppala, J., Colquhoun, H. M., & Rowan, S. J. (2010). A healable supramolecular polymer blend based on aromatic π− π stacking and hydrogen-bonding interactions. Journal of the American Chemical Society132(34), 12051-12058.
[45] Wang, Q., Bi, C. F., Fan, Y. H., Zhang, X., Zuo, J., & Liu, S. B. (2011). A novel copper (II) complex with schiff base derived from o-vanillin and L-methionine: syntheses and crystal structures. Russian Journal of Coordination Chemistry37, 228-234.
[46] İnci, D., Aydın, R., Vatan, Ö., Sevgi, T., Yılmaz, D., Zorlu, Y., & Çinkılıç, N. (2017). Synthesis and crystal structures of novel copper (II) complexes with glycine and substituted phenanthrolines: reactivity towards DNA/BSA and in vitro cytotoxic and antimicrobial evaluation. JBIC Journal of Biological Inorganic Chemistry22, 61-85.
[47] İnci, D., Aydın, R., Huriyet, H., Zorlu, Y., & Çinkılıç, N. (2018). Newly synthesized Cu (II) pyrazino [2,3‐f][1,10] phenanthroline complexes as potential anticancer candidates. Applied Organometallic Chemistry32(4), e4309.
[48] Inci, D., Köseler, A., Zeytünlüoğlu, A., Aydın, R., & Zorlu, Y. (2019). Interaction of a new copper (II) complex by bovine serum albumin and dipeptidyl peptidase-IV. Journal of Molecular Structure1177, 317-322.
[49] İnci, D., Aydın, R., Vatan, Ö., Huriyet, H., Zorlu, Y., Çoşut, B., & Çinkılıç, N. (2019). Cu (II) tyrosinate complexes containing methyl substituted phenanthrolines: Synthesis, X‐ray crystal structures, biomolecular interactions, antioxidant activity, ROS generation and cytotoxicity. Applied Organometallic Chemistry33(1), e4652.
[50] CrysAlisPro (version 1.171.41.113a), Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, (2021).
[51] Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography42(2), 339-341.
[52] Sheldrick, G. M. (2015). SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations and Advances71(1), 3-8.
[53] Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry71(1), 3-8.
[54] Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography65(2), 148-155.