مدلسازی سینتیکی تبدیل مستقیم پروپان به اکریلیک اسید بر روی کاتالیست Mo1V0.3Te0.23Nb0.12Ox در حضور و عدم حضور بخار آب با استفاده از الگوریتم ژنتیک

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشگاه مازندران

2 دانشگاه علم و صنعت

چکیده

به منظور بررسی نقش بخار آب در تبدیل مستقیم پروپان به اکریلیک اسید بر روی کاتالیست Mo1V0.3Te0.23Nb0.12Ox از مطالعات سینتیکی استفاده شده است. کاتالیست مورد نظر با روش دوغابی تهیه شده و دو دسته واکنش طراحی شده­اند: واکنش­های در حضور بخار آب و واکنش­های بدون حضور بخار آب. داده­های آزمایشگاهی در شرایط عملیاتی مختلف در یک راکتور بستر ثابت لوله­ای جمع­آوری شدند. دو مدل توانی و مارس-ون کرولن بکار گرفته شده و پارامترهای آنها با استفاده از الگوریتم ژنتیک بهینه شدند. نتایج مدل توانی نشان می­دهد که کارایی کاتالیست در حضور بخار آب به مقدار اکسیژن فاز گاز (با درجه 4/0-27/0) وابسته است، در مقابل مقدار اکسیژن بر کارایی کاتالیست بدون حضور بخار آب بی­تاثیر است. نتایج مدل مارس-ون کرولن نشان می­دهد که در حضور بخار آب اکسیداسیون سایت­های فعال کندتر از تبدیل هیدروکربن­هاست. درنتیجه تولید اکسیژن شبکه­ای، مرحله تعیین کننده واکنش و وابستگی کارایی کاتالیست به غلظت اکسیژن فاز گاز قابل انتظار است. در مقابل، بدون حضور بخار آب اکسیداسیون سایت­های فعال بسیار سریع­تر از کاهش آنهاست. درنتیجه اکسیژن شبکه­ای همواره در دسترس و کارایی کاتالیست مستقل از مقدار اکسیژن در فاز گاز است. نتایج تست XRD نیز نشان می­دهد که وجود بخار آب در سیستم باعث افزایش درجه کریستالیزاسیون، افزایش فاز موثر M1 و کاهش فاز غیر گزینش­پذیر MoO3 می­شود. بنابراین می­توان نتیجه گرفت بخار آب از طریق تاثیر بر ساختار کریستالی کاتالیست دسترسی به اکسیژن شبکه­ای را محدود کرده و به این ترتیب اکریلیک اسید با گزینش پذیری بیشتری تولید می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Kinetic modeling of propane selective oxidation to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox in the presence and absence of water using genetic algorithm

نویسندگان [English]

  • Golshan Mazloom 1
  • sayyed Mehdi Alaviamlashi 2
چکیده [English]

Role of water vapor in propane selective oxidation to acrylic acid over Mo1V0.3Te0.23Nb0.12Ox has been investigated using kinetic study. The catalyst was produced by slurry method and two sets of experiments have been designed: reactions in the presence and absence of water vapor. Experimental data were obtained under different operating conditions in a tubular fixed bed reactor. Power law and Mars-Van Krevelen (MVK) models for the predictions the catalytic performance were employed using the genetic algorithm. The reaction orders obtained by the power law model determined that gas phase oxygen concentration has considerable effects on catalytic performance in wet condition. Contrary to dry ones which reveal that changing oxygen concentration has negligible effects on catalytic performance. MVK results indicate that in the presence of water vapor, lattice oxygen production is the rate determining step. Therefore dependency on gas phase oxygen concentration is expectable. While at dry conditions the activation energy of hydrocarbon is higher than that of oxygen. Therefore lattice oxygen is always available and independent of gas phase oxygen. Presence of water induces some structural modifications: improvement the crystallinity, decreasing production of non-selective sites (MoO3) and enhanced presence of the M1 phase. As a results, water vapor limits lattice oxygen availability through improvement of catalyst structure leading to better acrylic acid selectivity.

کلیدواژه‌ها [English]

  • Kinetic modeling
  • propane selective oxidation to acrylic acid
  • Mars-Van Krevelen mechanism
  • role of water vapor

[1] http://www.grandviewresearch.com/industry-analysis/acrylic-acid-market

[2] F. Cavani, F. Trifiro, Catal Today, 51(1999) 561.

[3] B. Silberov, M. Fathi, A. Holmen, Appl Catal A, 276(2004) 17.

[4] J. Wu, H. Yang, Y. Fan, B. Xu, Y. Chen, J Fuel Chem Technol, 35(2007) 684.

[5] H. S. Jiang, X. Mao, S. J. Xie, B. K. Zhong, J Mol Catal A, 185 (2002) 143

[6] F. C. Jentoft, J. Kro¨hnert, J. Melsheimer, T. Ressler, O. Timpe, J. Wienold, R. Schlo¨gl, Appl Catal A, 256(2003) 291.

[7] G. Landi, L. Lisi, J. C. Volta, J Mol Catal A, 222(2004) 175.

[8] B. Deniau, J. M. M. Millet, S. Loridant, N. Christin, J. L. Dubois, J Catal, 260 (2008) 30.

[9] F. Ivars, B. Solsona, E. R. Castellon, J. M. L. Nieto, J Catal, 262(2009) 35.

[10] T. Ushikubo, H. Nakamura, Y. Koyasu, S. Wajiki, EP 0 608 838 A2(1994).

[11] M. M. Lin, Appl Catal A, 250(2003) 287.

[12] H. G. Lintz, S. P. Muller, Appl Catal A, 357 (2009) 178.

[13] P. Concepcion, S. Hernandez, J. M. Lopez Nieto, Appl Catal A, 391(2011) 92.

[14] K. S. Oh, S. I. Woo, Catal Today, 137(2008) 61.

[15] B. Zhu, H. Li, W. Yang, L. Lin, Catal Today, 93-95(2004) 229.

[16] E. K. Novakova, J. C. Vedrine, E. G. Derouane, J Catal, 211(2002) 226.

[17] R. K. Widi, S. Bee Abd Hamid, R. Schlogl, Reac Kinet Mech Cat Lett, 98 (2009) 273.

[18] D. Stern, R. K. Grasselli, J Catal, 167(1997) 560.

[19] Sh. Elhami, N. Mohmedi, J Appl Chem, 11(2017) 59.

[20] D. Creaser, B. Andersson, Appl Catal A, 141(1996) 131.

[21] M. Ai, J Catal, 101(1986) 389.

[22] M. Lin, T. B. Desai, F. W. Kaiser, P. D. Klugherz, Catal Today, 61(2000) 223

[23] L. Luo, J. A. Labinger, M. E. Davis, J Catal, 200(2001) 222.

[24] G. Landi, L. Lisi, J.C. Volta, Catal. Today, 91-92 (2004) 275.

[25] E.K. Novakova, Ph.D. thesis, Department of Chemistry, Liverpool University, (2002).

[26] M. R. Rahimpour, H. ElekaeiBehjati, Fuel Process Technol, 90(2009) 792.

[27] K. Keyvanloo, M. Sedighi, J. Towfighi, Chem Eng J, 209(2012) 255.

[28] K. Omata, S. Kobayashia, J. Horiguchi, Y. Kobayashi, Y. Yamazaki, M. Yamada, Appl Catal A, 170 (2012) 425.

[29] D. Zhonghua, W. Hongxin, C.  Wenling, Y. Weishen, Chin J Catal, 29 (2008) 1032.

[30] G. Mazloom, S. M. Alavi, Particulate science and technology, 33 (2015) 204.

[31] G. Mazloom, S. M. Alavi, Iranian Journal of Catalysis, 4 (2014) 149.

[32] R. Fushimi, S. O. Shekhtman, A. Gaffney, S. Han, G. S. Yablonsky, J. T. Gleaves, Ind Eng  Chem Res, 44 (2005) 6310.

[33] J. L. Callahan, R. K. Grasselli, AICHE J, 9 (1963) 755.

[34] L. Kihlborg, Acta Chem Scand, 23 (1969) 1834.

[35] H.S. Jiang, X. Mao, S.J. Xie, B.K. Zhong, J Mol Catal A, 185 (2002) 143.

[36] G. Mestl, Ch. Gottschall, R. Linsmeier, M. Dieterle, J. Find, D. Herein, J. Jäger, Y. Uchida, R. Schlögl, JMol Catal A: Chem, 162 (2000) 463.

[37] M. Dieterle, G. Mestl, J. Jäger, Y. Uchida, H. Hibst, R. Schlögl, J Mol Catal A: Chem, 174 (2001) 169