Degradation of Rhodamine 6G in aqueous solution by using Au/Fe3O4 core\shell nanoparticles

Document Type : Original Article

Authors

1 Chemistry department, Faculty of Sciences, Rasht, Guilan, Iran

2 Faculty of Sciences, University of Guilan

Abstract

In this study, magnetic Fe3O4 nanoparticles were synthesized by co-precipitation method and then Au shell was extended over these nanoparticles via chemical reduction of chloroauric acid with sodiumborohydride under ultrasound irradiation. The obtained Au/Fe3O4 nanoparticles were characterized by using X-ray diffraction technique and Fourier transform infrared spectroscopy and their physical properties was studied by scanning electron microscopy and transmission electron microscopy. The characterized nanoparticles were used as efficient catalyst in the degradation of Rhodamine 6G dye in aqueous solution. UV-Vis spectroscopy was used to determine the dye concentration during optimization of the reaction conditions, and effect of various parameters such as pH, catalyst loading, temperature, and amount of the oxidant was investigated. It was found that Au/Fe3O4 catalyst at 80 oC in the pH of 12 can effectively degrade Rhodamine 6G dye molecules in the presence of hydrogen peroxide as an inexpensive and available oxidant. The catalyst after recycling was also, able to perform its role in successive runs.

Keywords

Main Subjects


[1] F. P. Schäfer, Dye Lasers, 3rd Ed. Springer-Verlag, Berlin. 1990.
[2] F. J. Duarte , L. W. Hillman, Dye Laser Principles. Academic, New York. 1990.
[3] E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique  J. Hazard. Mater. 98.1(2003), 33.
[4] N. Masomboon, C. Ratanatamskul, M. C. Lu, Kinetics of 2, 6-dimethylaniline oxidation by various Fenton processes. J. Hazard. Mater. 192.1(2011), 347.
[5] H. H.Fenton, Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 65(1894), 899.
[6] M. Hayyan, M. A. Hashim, I. M. AlNashef, Superoxide Ion: Generation and Chemical Implications, Chem. Rev. 116(2016), 3029.
]7[ نجاتی، کاملیا; رضوانی، ذوالفقار; جارالمسجد، نعیمه; ساعتی، مرضیه، دانشگاه سمنان، مجله علمی پژوهشی شیمی کاربردی، شماره 31 (1393) ص 87.
]8[ منصف خوشحساب، زهرا; گنبدی، کتایون، دانشگاه سمنان، مجله علمی پژوهشی شیمی کاربردی، شماره 30 (1393) ص 31.
]9[ عبدی، سارا; نصیری، مسعود; حسن خانی، محمد، دانشگاه سمنان، مجله علمی پژوهشی شیمی کاربردی، شماره 33 (1393) ص 65.
]10[ حقیقی اصل، علی; احمدپور، امین; فلاح، نرگس، دانشگاه سمنان، مجله علمی پژوهشی شیمی کاربردی، شماره 42 (1396) ص 253.
]11[ ابراهیمی فرشچی، مهدی; اقدسی نیا، حسن; ختائی، علیرضا; دانشگاه سمنان، مجله علمی پژوهشی شیمی کاربردی، ویژه نامه نخستین سمینار شیمی کاربردی ایران، (1395) ص 34.
[12] L. J. Xu , J. L. Wang, A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 186(2011), 256.
[13] A. D. Bokare , W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275(2014), 121.
[14] T. Zeng, X. L. Zhang, S. H. Wang, Y. R. Ma, H. Y. Niu, Y. Q. Cai, Assembly of a Nanoreactor System with Confined Magnetite Core and Shell for Enhanced Fenton‐Like Catalysis. Chem. Eur. J. 20(2014), 6474.
[15] X. F. Xue, K. Hanna, N. S. Deng, Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J. Hazard. Mater. 166(2009), 407.
[16] H. Yan, J. C. Zhang, C. X. You, Z. W. Song, B. W. Yu, Y. Shen, Influences of different synthesis conditions on properties of Fe 3 O 4 nanoparticles. Mater. Chem. Phys. 113(2009), 46.
[17] N. B. Bokhale, , S. D. Bomble, R. R. Dalbhanjan, D. D. Mahale, S. P. Hinge, B. S. Banerjee, P. R. Gogate, Sonocatalytic and sonophotocatalytic degradation of rhodamine 6G containing wastewaters. Ultrason. Sonochem. 21(2014) 1797.
[18] T. Aarthi, G. Madras, Photocatalytic degradation of rhodamine dyes with nano-TiO2. Ind. Eng. Chem. Res. 46.1(2007), 7.
[19] M. Dükkancı, G. Gündüz, S. Yılmaz, R. V. Prihod’ko, Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J. Hazard.Mater. 181.1(2010), 343.
[20] T. Zeng, Y. Bai, H. Li, W. F. Yao, Capsule-Like Fe3O4 Nanoparticles and Triangle Fe3O4 Nanoplates: Facile Synthesis, Magnetic Properties and Catalytic Performance. Nano. 10 (2015), 1550063.
[21] P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, M. H.  Whangbo, Ag@ AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed 47 (2008) 7931.
[22] D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai,  Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 134 (2012) 6309.
[23] M. C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104 (2004) 293.
[24] N. B. Bokhale, S. D. Bomble, R. R. Dalbhanjan, D. D. Mahale, S. P. Hinge, B. S. Banerjee, A.V.  Mohod, P. R. Gogate, Sonocatalytic and sonophotocatalytic degradation of rhodamine 6G containing wastewaters. Ultrason. Sonochem. 21 (2014) 1797.
[25] M. Dükkancı, G. Gündüz, S. Yılmaz, Y. C. Yaman, R.V.  Prikhod’ko, I. V. Stolyarova, Characterization and catalytic activity of CuFeZSM-5 catalysts for oxidative degradation of Rhodamine 6G in aqueous solutions. Appl. Catal. B: Environ. 95 (2010) 270.
[26] K. H. Reddy, S. Martha, K. M. Parida, Fabrication of novel p-BiOI/n-ZnTiO3 heterojunction for degradation of rhodamine 6G under visible light irradiation. Inorg. Chem. 52 (2013) 6390.