Using highly substituted isocyanides in the synthesis ofiminothiophenes fused to quinolines

Document Type : Original Article

Authors

1 Chemistry Department, Alzahra University

2 student/Alzahra University

3 Student/ Alzahra University

4 Professor/Shahid Beheshti University

Abstract

In this manuscript the reaction of 2-mercaptoquinoline-3-carbaldehydes and 1,1,3,3-tetramethyl butylisocyanide as highly substituted isocyanide in the reflux of ethanol without catalyst is described. Formation of C-S, C-C and simultaneously oxidation towards thiophenone derivative is the advantage of this reaction. Also contrary to our impression using hindered isocyanides did not prevent the cyclisation. Only in one example when 2-mercapto quinoline-3-carbaldehyde was used in the reaction, the corresponding alpha keto amide was formed. All of the compounds are new so that they were characterized by mp, FT-IR, H and C-NMR and in some case the structure was confirmed by x-ray single crystallography.

Keywords

Main Subjects


[1] J. P. Michael, Nat. Prod. Rep, 25 (2008) 166.
[2] J. Marco-Contelles, MD. Carreira, Lambert Academic, Saarbrucken, Germany, (2010).
[3] (a) J. Marco-Contelles, E. Perez-Mayoral, A. Samadi, M. d. C. Carreiras, E. Soriano, Chem. Rev., 109 (2009) 2652; (b) S. Madapa, Z. Tusi, S. Batra, Curr. Org. Chem., 12 (2008) 1116.
]4[ ثنایی شعار، هاله; توکلی، هامان; روئین، سارا، مجله شیمی کاربردی، شماره 38 (1395) ص 139.
[5] M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, in Friedlander Annulation in the Synthesis of Azaheterocyclic Compounds in Advances in Heterocyclic Chemistry, ed. by A. R. Katritzky, Academic, Oxford, 2011, vol. 185, p 139.
[6] Z. Du, C. Zhou, Y. Gao, Q. Ren, K. Zhang, H. Cheng, J. Wang, Org. Biomol. Chem., (2012) 36.
[7] T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, R. S. Rogers, D. J. Rogier, S. S. Yu, G. D. Anderson, E. G, Burton, J. N. Cogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. Veenhuizen, Y. Y. Zhang, P. C. Isakson, J. Med. Chem., (1997) 1347.
[8] M. J. Brown, P. S. Carter, A. E. Fenwick, A. P. Fosberry, D. W. Hamprecht, M. J. Hibbs, R. L. Jarvest, L. Mensah, P. H. Milner, P. J. O. Hanlon, A. J. Pope, C. R. Richardson, A. West, D. R. Witty, Bioorg. Med. Chem. Lett., 12 (2002) 3171.
[9] W. Quaglia, M. Pigini, A. Piergentili, M. Giannella, F. Gentili, G. Marucci, A. Carrieri, A. Carotti, E. Poggesi, A. Leonardi, C. Melchiorre, J. Med. Chem., (2002) 1633.
[10] M. B. Kanani, M. P. Patel, Rsc Adv., 4 (2014) 28798.
[11] L. A. Van Vliet, N. Rodenhuis, D. Dijkstra, H. Wikstro, T. A. Pugsley, K. A. Serpa, L. T. Meltzer, T. G. Heffner, L. D. Wise, J. Med. Chem., (2000) 2871.
[12] L. Wu, Y. Wang, H. Song, L. Tang, Z. Zhou, C. Tang, Adv. Synth. Catal., 355 (2013) 1053.
[13] M. B. Kanani, M. P. Patel, RSC Adv., 4 (2014) 28798.
[14] M. Veiderma, Proc. Estonian Acad. Sci. Chem., 56 (2007) 98.
[15] J. A. Zahra, B. A. A. Thaher, M. M. El-Abadelah, R. Boese, Org. Biomol. Chem., 1 (2003) 822.
[16] Xue, J. Yang, Y. Huang, Synlett 2007 (2007) 1533.
[17] M. Adib, M. Mahdavi, S. Bagherzadeh, L.-G. Zhu and M. Rahimi-Nasrabadi, Tetrahedron Lett., 51 (2010) 27.
[18] M. Shiri, Z. Faghihi, H. A. Oskouei, M. M. Heravi, S. Fazelzadeh, B. Notash, Rsc Adv., 6 (2016) 92235.
[19] M. A. Zolfigol, P. Salehi, A. Ghaderi, M. Shiri, Z. Tanbakouchian, J. Mol. Catal. A: Chem., 259 (2006) 253.
[20] M. A. Zolfigol, P. Salehi, M. Shiri, T. F. Rastegar, A. Ghaderi, J. Iran. Chem. Soc., 5 (2008) 490.
[21] H. Hamidi, M. M. Heravi, M. Tajbakhsh, M. Shiri, H. A. Oskooie, S. A. Shintre, N. A. Koorbanally, J. Iran. Chem. Soc., (2015) 2205.
[22] M. Shiri, M. Fathollahi-Lahroud, Z. Yasaei, Tetrahedron, 13 (2017) 2501.
[23] M. Shiri, M. Heydari, V. Zadsirjan, Tetrahedron, 15 (2017) 2116.
[24] A. Srivastava, R. Singh, Indian J. Chem. Sect. B, 44 (2005) 1868.
[25] N. J. Parmar, H. A. Barad, B. M. Labana, R. Kant and V. K. Gupta, Rsc Adv., 3 (2013) 20719.