بیوسنتز نانوذرات پوسته-هسته اکسید آهن-طلا با استفاده از عصاره گیاه اوجی و کاربرد آن برای دارورسانی هدفمند داروی ضدسرطان 6-مرکاپتوپورین

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه شیمی، واحد قائم شهر، دانشگاه آزاد اسلامی، قائم شهر، ایران

2 دانشکده شیمی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، مازندران، ایران

3 گروه مهندسی شیمی، دانشگاه صنعتی قوچان

چکیده

در این کار تحقیقاتی، نانوذرات پوسته-هسته اکسید آهن-طلا به روش بیوسنتز در دو مرحله سنتز شد. در مرحله اول، نانوذرات اکسید آهن با استفاده از روش بیوسنتز و عصاره گیاه اوجی سنتز شد. در ادامه پوسته طلا با استفاده از نمک طلا به عنوان پیش ماده بروی سطح نانوذرات آهن سنتز شد. نانوذرات سنتزی با استفاده از روشهای میکروسکوپ الکترونی روبشی، اسپکتروسکوپی مرئی-فرابنفش، آنالیز EDX و پراکندگی نور دینامیکی مورد شناسایی قرار گرفت. حضور پیک جذبی در طول موج529 نانومتر و همچنین حضور عناصر طلا، آهن و اکسیژن سنتز نانوذره سنتزی را تایید می کند. اندازه نانوذرات سنتزی حدود 29 نانومتر با استفاده از روش پراش پرتوی ایکس تعیین شد. نتایج نشان داده است که پس از نشاندن داروی بروی نانوذره اندازه آن از 20 نانومتر به 120 نانومتر افزایش یافته که نشان از توانایی بالای حامل برای لود کردن دارو ضدسرطان دارد. از طرفی با استفاده از داده های پراکنندگی نوری، نشان داده شده است که نانوذره لود شده با دارو به مدت 20 روز پایدار می باشند. در ادامه، نانوذره سنتزی به عنوان حامل برای داروی 6-مرکاپتوپورین مورد استفاده قرار گرفت و نتایج توانمندی این نانوذره در بارگیری بالای دارو را تایید می کند. مقدار IC50=4.1 میکروگرم بر میلی لیتر برای داروی حمل شده به وسیله نانوذره با استفاده از رده سلولی MCF7 تعیین شد. از طرفی میزان سمیت این داروی قرار گرفته بروی نانوذره مورد بررسی قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Biosynthesis of core- shell ferrite-gold nanoparticles using Mentha aquatic plant extract and its application for 6-mercaptopurine drug delivery

نویسندگان [English]

  • sadegh salmanpour 1
  • Mohammad Ali Khalilzadeh 2
  • Daryoush Zareyee 1
  • Hassan Karimi-Maleh 3
1 Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
2 Department of Chemistry, Science and Research Branch, Islamic Azad University, Mazandaran, Iran
3 Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
چکیده [English]

In this research work, core- shell ferrite-gold nanoparticles were synthesized by biosynthesis in two steps. In the first step, iron oxide nanoparticles were synthesized by biosynthesis using Mentha aquatic plant extract. The gold shell was then synthesized using gold salt as the precursor on the iron nanoparticles. Synthetic nanoparticles were identified using scanning electron microscopy, visible-ultraviolet spectroscopy, elemental analysis and dynamic light scattering. The presence of the absorbance peak at the wavelength of 529 nm and also the presence of gold, iron and oxygen elements of the elemental analysis confirms purity of the synthesized nanoparticles. The size of the synthetic nanoparticles was determined about 30 nm using X-ray diffraction. Result shows after loading of drug at surface nanoparticle the size of nanoparticles increased from 20 nm to 120 nm that confirm loading process of anticancer drug. In addition, DLS data confirm the stability of system for 20 days. Subsequently, the synthetic nanoparticles were used as carriers for 6-mercaptopurine, and results confirm their ability to load the drug high. IC50 = 4.1 μg / ml was determined for the drug transported by nanoparticles using MCF7 cell line. On the other hand, the toxicity of this drug on the nanoparticles was investigated.

کلیدواژه‌ها [English]

  • core- shell
  • ferrite-gold nanoparticles
  • Biosynthesis
  • targeting drug delivery
  • 6-mercaptopurine
  • Mentha aquatic plant
[1] Z. Saiyed, S. Telang, C. Ramchand, BioMagnetic Research and Technology 1 (2003) 2.
[2] H. Karimi-Maleh, A. Fallah Shojaei, F. Karimi, K. Tabatabaeia, S. Shakeri, J. Nanostruct. 8 (2018) 417.
[3] F. Karimi, A. Fallah Shojaei, K. Tabatabaeian, H. Karimi-Maleh, S. Shakeri, IET Nanobiotechnol., 12 (2018) 336.
[4] I. Hilger, International Journal of Hypertension, 29 (2013) 828.
[5] A. Singh, S.K. Sahoo, Drug discovery today, 19 (2014) 474.
[6] P. Kucheryavy, J. He, V.T. John, P. Maharjan, L. Spinu, G.Z. Goloverda, V.L. Kolesnichenko, Langmuir, 29 (2013) 710.
[7] A. Pourjavadi, M. Kohestanian, C. Streb, Materials Science and Engineering: C, 108 (2020) 110418
[9] M. Ayubi, M. Karimi, S. Abdpour, K. Rostamizadeh, M. Parsa, M. Zamani, A. Saedi, Materials Science and Engineering: C, 104 (2019) 109810
[9] N.S. Elbialy, M.M. Fathy, R.AL-Wafi, R. Darwesh, U.A. Abdel-dayem, M. Aldhahri, A. Noorwali, A.A.AL-ghamdi, International Journal of Pharmaceutics, 554 (2019) 256.
[10] N. Avedian, F. Zaaeri, M.P. Daryasari,  H.A. Javar, M. Khoobi, Journal of Drug Delivery Science and Technology, 44 (2018) 323.
[11] X. Cai, X. Yua, W. Qin, T. Wang, Z. Jiaa, R. Xiaoa, C. Qi, Bioorganic Chemistry, 2019, 103375.
[12] R. Tietze, J. Zaloga, H. Unterweger, S. Lyer, R. P.Friedrich, C. Janko, M. Pöttler, S. Dürr, C. Alexiou, Biochemical and Biophysical Research Communications, 468 (2015) 463.
[13] M. Arruebo, R.F. Pacheco, M. RicardoIbarra, J. Santamaría, Nano Today 2 (2007) 22.
[14] G. Mohammadi Ziarani, M. Malmir, N. Lashgari, A. Badiei, RSC Adv., 9 (2019) 25094.
[15] F. Xiong, S. Huang, N. Gu, Drug Development and Industrial Pharmacy, 44 (2018) 697.
[16] J.Huang, Y. Li,  A. Orza, Q. Lu, P. Guo, L. Wang, L. Yang, H. Mao, Advanced Functional Materials, 26 (2016) 3818.
[17] Jon Dobson, Drug Development Research 67 (2006) 55.
[18] V.V. Mody, S. Shah, A. Singh, W. Bevins, H. Parihar, Applied Nanoscience, 4 (2014) 385.
[19] S.C. McBain, H.H.P. Yiu, J. Dobson, Int. J. Nanomedicine.  3 (2008) 169.
[20] B. Chertok, B.A. Moffat, A.E. David, F. Yu, C. Bergemann, B.D. Ross, V.C. Yang, Biomaterials 29 (2008) 487.
[21] O. Veiseh, J.W. Gunn, M. Zhang, Advanced Drug Delivery Reviews, 62 (2010) 284.
[22] P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Advanced Drug Delivery Reviews 60 (2008) 1307.
[23] G. Han, P. Ghosh, M. DeV. M. Rotello, NanoBiotechnology, 3 (2007) 40
[24] A.S. Mukasyan, P. Epstein, P. Dinka, Proceedings of the Combustion Institute, 31, (2007) 1789.
[25] D.M. Antonelli, J.Y. Ying, angewandte chemie 34 (1995) 2014.
[26] P. G. McCormick, T. Tsuzuki, J. S. Robinson, J. Ding, Advanced Materials 13 (2001) 12.
[27] R. Raliya, J. C. Tarafdar, Agricultural Research 2 (2013) 48.
[28] R. Raliya, P. Biswas, J.C. Tarafdar, Biotechnology Reports 5 (2015) 22.
[29] K.B. Narayanan, N. Sakthivel, Materials Letters, 62 (2008) 4588.
[30] Y. P. Yew, K. Shameli, M. Miyak, N.B.B.A. Khairudin, S.E.B. Mohamad, T. Naiki, K.X. Lee, Arabian Journal of Chemistry, 2018, https://doi.org/10.1016/j.arabjc.2018.04.013
[31] A. Jafarizad, K. Safaee, S. Gharibian, Y. Omidi, D. Ekinci, Procedia Materials Science 11 (2015) 224.
[32] S.S. Rad, A.M. Sani, S. Mohseni, Microb Pathog. 131 (2019) 239.
[33] H. Karimi-Maleh, F.Tahernejad-Javazmi, N. Atar, M.L. Yola, V.K. Gupta, A.A. Ensafi, Ind. Eng. Chem. Res. 54 (2015) 3634.
[34] K.M. Naik, S.T. Nandibewoor, Journal of Sulfur Chemistry, 32 (2011) 123.