سنتز N – بوتیل - N نیتروکسی اتیل نیترامین (بوتیل ننا) با استفاده از دی نیتروژن پنتوکسید در محلول اسید نیتریک، روشی اقتصادی , ایمن و یک مرحله ای

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 شیمی تجزیه , دانشکده شیمی , دانشگاه سمنان, سمنان,ایران

2 دانشکده شیمی، دانشگاه سمنان، سمنان ، ایران

3 هیأت علمی دانشگاه بوعلی سینا

4 شیمی تجزیه، دانشکده شیمی، دانشگاه سمنان، سمنان، ایران

چکیده

N بوتیل - N – نیتوکسی اتیل نیترامین (بوتیل ننا) نرم کننده پایه نیترآمینی است که به دلیل مزایایی از جمله بهبود خواص سوزشی , عدم مهاجرت , پایداری حرارتی نسبتا بالا و افزایش ایمپالس، بطور گسترده در فرمولاسیون ترکیبات نیترامینی همچون HMX و RDX ( ترکیبات مولد گاز در کیسه هوای اتومبیل و ...) مورد استفاده قرار می گیرد. در این پروژه روش جدیدی جهت سنتز بوتیل ننا ابداع شد. که از لحاظ اقتصادی و ایمنی نسبت به سایر روش های گزارش شده ارجح است. در این روش، سنتز الکتروشیمیایی دی نیتروژن پنتوکسید در دو فرایند جریان و پتانسیل کنترل شده انجام شد و در ادامه بوتیل ننا با استفاده از پیش ماده 2- بوتیل آمینو اتانول و محصول الکتروشیمایی فوق تولید شد. در طی سنتزهای متوالی زمان, دما و نسبت مولی مواد اولیه بهینه شد. نتایج سنتزهای متوالی نشان داد که دمای مناسب نیتراسیون 35 درجه سانتیگراد , زمان واکنش یک ساعت و نسبت مولی عامل الکلی به دی نیتروژن پنتوکسید یک به سه می باشد. در روش فوق کنترل دما به راحتی امکان پذیر است. بمنظور بررسی تاثیر برهم کنش عامل های موثر بر سنتز ، از روش طراحی آزمایش رکرسیونی استفاده شد و نتایج نشان داد که عاملهای دما و نسبت مولی و زمان واکنش مستقل از هم عمل نمی کنند و مقدار این برهم کنش ها نیز محاسبه شد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of N-butyl-N-nitroxyethylnitramine (Butyl-NENA)) Using DinitrogenPentoxide in Nitric Acid, Economical, Safe, and One-Step Method

نویسندگان [English]

  • hassan goodarzi 1
  • Alireza Asghari 2
  • Davood Nematollahi 3
  • maryam rajabi 4
1 analytical chemistry, faculty of chemistry, semnan university ,semnan, iran
2 Department of Chemistry, Semnan University, Semnan 35195-363, Iran
3 Faculty board
4 Analytical chemistry, chemistry, Semnan university, Semnan, Iran
چکیده [English]

N-butyl-N-nitroxyethylnitramine (Butyl-NENA) is a nitramine-based softener that is widely used in the formulation of Nitramine compounds, such as HMX and RDX (gas generator components in the airbag, etc.).In this study, a new preferred method has been developed for the synthesis of Butyl-NENA, which is safe and economiccompared to the reported synthesis routs. In this Project, the electrochemical synthesis of dinitrogenpentoxide was carried out in two processes of constant electric current and potential. Afterwards, Butyl-NENAwas synthesised using 2-butyl aminoethanol as a precursor, and subsequently a solution obtained from the electrolysis. During the synthesis of Butyl-NENA, time, temperature, and molar ratio of the reactants were optimized. The results of the sequential syntheses showed that the suitable temperature of nitration,the reaction time, and the molar ratio of Alcohol to Dinitrogenpentoxidesolution were 35 ° C, 1 hour, and 1:3 respectively. In this way, temperature control is easily possible.The factors affecting the synthesis were investigated using Regression Test Design method. The results showed that the factors including temperature, molar ratio, and the reaction time do not act independently, and accordingly, the effects of their interactions were calculated.

کلیدواژه‌ها [English]

  • Butyl-NENA
  • 2-butyl aminoethanol
  • Dinitrogen pentoxide
  • Electrosynthesis in Constant current and potential
[1] M. A. Vieira, M. A. Silva, L. O. Santos and M. M. Beppu, European Polymer Journal, 47 (2011)254.
[2] R. U. Nair, N. S. Asthana, S. A. Rao and B. R. Gandhe, Defence Science Journal, 60 (2010)137.
[3] J. Sandstrom, A. Hafstrand and P. Sjoberg, U.S. Patent No. 5,695,216 (1997).
[4] K. T. Chakraborthy, C. K. Raha, B. Omprakash and A. Singh,  Energetic Materials, 22(2004)41.
[5] R. Cartwright, Propellants, Explosives, Pyrotechnics, 20(1995)51.
[6] E. H. Zeigler, U.S. Patent No. 5,507,891 (1996).‏
[7] D. Chakraborty, P. R. Muller, S. Dasgupta and A. W. Goddard, Journal of computer-aided materials design, 8 (2001)203.
[8] J. P. Agrawal, High energy materials: propellants, explosives and pyrotechnics, John Wiley & Sons, 2010.
[9] K. T. chakraborthy, C.K. Omprakash, and A. Singh, Energetic Materials, 22(2004) 41.‏
[10] S. R. Damse, B. Omprakash, G. B. Tope, K. T. Chakraborthy and A. Singh,  Journal of hazardous materials, 167(2009)1222.
[11] P. K. Rao, K. A. Sikder, A. M. Kulkami, M. M. Bahalerao and R. B. Gandhe, Propellants, Explosives, Pyrotechnics, 29(2004)93.
[12] J. A. Dusbabek, G.L. Ellis, C. R. Larson, T. V. Brown, C. L. Euteneuer, P. S. Mertens and F. Caprio, U.S. Patent No. 6,203,558(2001).
[13] K. K. Rink, J. D. Green, A. W. Moore and E. R. Lewis,  U.S. Patent No. 5,941,562 (1999).
[14] M. Abdullah, F. Gholamian and A. R. Zarei, ISRN Aerospace Engineering, (2013).
[15] A. Provatas, Defence Science and Technology Organisation Melborne  Australia, No. DSTO-TR-0966, (2000).
[16] A. T. Blomquist, T. F. Fiedorek and U. S. Nitramines, U. S. Patent 2,485,855 (1949).
[17] O. H. Johansen and M. Christensen, International Annual Conference ICT. (2002) 90.
[18] M. E. Sitzmann, N. J. Trivedi, P. B. Skahan, J. A. Kenar, L. A. Nock and A.G. Stem, Propellants, Explosives, Pyrotechnics, 31 (2006)124.
[19] P. Golding, R. W. Millar, N. C. Paul and D. H. Richards, Tetrahedron, 49(1993)7051.
[20] H. Z. Zhi, J. Luo, G. A. Feng and C. X. Lv, Chinese Chemical Letters, 20(2009)379.
[21] S. Wang, G. Q. Lu, G. J. Millar, Energy & fuels, 10(1996)896.‏
[22] G. A. Olah and G. S. prakash, Across Conventional Lines: Selected Papers of George A Olah Volume 2, World Scientific, (2003).
[23] H. Ikram, Current Medical Research and Opinion, 3(1976)719.
[24] M. Bansinath, B. Arbabha, H. Turndorf, and U. C. Garg, Neurochemical research, 18(1993)1063.
[25] E. A. Lock, M. K. Ellis, P. Gaski, M. Robinson, T. R. Auton, W. M. Provan and  D. L. Lee, Journal of inherited metabolic disease 21(1998)498.
[26] T. E. Stevens and W. D. Emmons, Journal of the American Chemical Society 79(1957)6008.
[27] J. H. Robson, Journal of the American Chemical Society 77(1955)107.
[28] G. E. Bagg and A. W. Arber, U.S. Patent No. 5,318,763 (1994).
[29] G. E. Bagg, D. A. Salter and A. J. Sanderson, U.S. Patent No. 5,128,001 (1992).‏
[30] J. E. Harrar, R. Quong, L. P. Rigdon and R. R. McGuire, U.S. Patent No. 6,200,456 (2001).
[31] M. Faraji, P. Derakhshi, K. Tahvildari, Journal of Applied Chemistry 12 (2018) 31.
[32] J. E. Harrar, R. Quong, L. P. Rigdon and R. R. McGuire,, Journal of the Electrochemical Society 144(1997)2032.
[33] R. R. McGuire, C. L. Coon, J. E. Harrar and R. K. Pearson, U.S. Patent No. 4,432,902(1984).
[34] N. C. Deno, Journal of Chemical Education, 48 (1971) A218.
[35] S. Patai, The chemistry of amino, nitroso, nitro, and related groups, John Wiley & Sons Inc, (1996).
[36] Q. Wang, M. Su, X. Zhang, L. Wang and Z. Mi, Electrochimica acta 52 (2007) 3667.